Journal of neurophysiology
-
It is now well established that the analgesic actions of opioids can be modified by "anti-analgesic" or "antiopioid" peptides, among them cholecystokinin (CCK). Although the focus of much recent work concerned with CCK-opioid interactions has been at the level of the spinal cord, CCK also acts within the brain to modify opioid analgesia. The aim of the present study was to characterize the actions of CCK in a brain region in which the circuitry mediating the analgesic actions of opioids is relatively well understood, the rostral ventromedial medulla (RVM). ⋯ Opioid suppression of ON-cell firing was not significantly altered by CCK. Thus CCK acting within the RVM attenuates the analgesic effect of systemically administered morphine by preventing activation of the putative pain inhibiting output neurons of the RVM, the OFF cells. CCK thus differs from another antiopioid peptide, orphanin FQ/nociceptin, which interferes with opioid analgesia by potently suppressing all OFF-cell firing.
-
Focal ischemia evokes a sudden loss of membrane potential in neurons and glia of the ischemic core termed the anoxic depolarization (AD). In metabolically compromised regions with partial blood flow, peri-infarct depolarizations (PIDs) further drain energy reserves, promoting acute and delayed neuronal damage. Visualizing and quantifying the AD and PIDs and their acute deleterious effects are difficult in the intact animal. ⋯ This study shows that anoxic depolarization evoked by global ischemia-like conditions is a spreading process that is focally initiated at multiple sites in cortical and subcortical gray. The combined energy demands of O(2)/glucose deprivation and the AD greatly exacerbate neuronal damage. Glutamate receptor antagonists neither block the AD in the ischemic core nor, we propose, block recurrent PID arising close to the core.