Journal of neurophysiology
-
Effects of the CB2-selective cannabinoid agonist AM1241 on activity evoked in spinal wide dynamic range (WDR) neurons by transcutaneous electrical stimulation were evaluated in urethane-anesthetized rats. Recordings were obtained in both the absence and the presence of carrageenan inflammation. AM1241, administered intravenously or locally in the paw, suppressed activity evoked by transcutaneous electrical stimulation during the development of inflammation. ⋯ The AM1241-induced decrease in peripheral edema was blocked by the CB2 but not by the CB1 antagonist. These data demonstrate that activation of cannabinoid CB2 receptors is sufficient to suppress neuronal activity at central levels of processing in the spinal dorsal horn. Our findings are consistent with the ability of AM1241 to normalize nociceptive thresholds and produce antinociception in inflammatory pain states.
-
High-frequency stimulation of pyramidal cell inputs to developing (P9-12) hippocampal stratum radiatum interneurons expressing GluR2-lacking, Ca(2+)-permeable AMPA receptors produces long-term depression of synaptic transmission, if N-methyl-d-aspartate (NMDA) receptors are blocked. Here we show that these same synapses display a remarkably versatile signal integration if postsynaptic NMDA receptors are activated. ⋯ At synapses with predominantly GluR2-containing AMPA receptors, repetitive stimulation did not change synaptic strength regardless of whether NMDA receptors were activated. The interactions among GluR2 expression, NMDA receptor expression, and membrane potential thus confer on hippocampal interneurons a distinctive means for differential decoding of high-frequency inputs, resulting in enhanced or depressed transmission depending on the functional state of the interneuron.