Journal of neurophysiology
-
Randomized Controlled Trial
Riluzole decreases flexion withdrawal reflex but not voluntary ankle torque in human chronic spinal cord injury.
The objectives of this study were to probe the contribution of spinal neuron persistent sodium conductances to reflex hyperexcitability in human chronic spinal cord injury. The intrinsic excitability of spinal neurons provides a novel target for medical intervention. Studies in animal models have shown that persistent inward currents, such as persistent sodium currents, profoundly influence neuronal excitability, and recovery of persistent inward currents in spinal neurons of animals with spinal cord injury routinely coincides with the appearance of spastic reflexes. ⋯ There was no effect, however, on the monosynaptic plantar and dorsiflexor H-reflex responses. Overall, these results demonstrate a contribution of persistent sodium conductances to polysynaptic reflex excitability in human chronic spinal cord injury without a significant role in maximum strength production. These results suggest that intrinsic spinal cellular excitability could be a target for managing chronic spinal cord injury hyperreflexia impairments without causing a significant loss in volitional strength.