Journal of neurophysiology
-
The posterior thalamic nucleus (PO) is a higher order nucleus heavily implicated in the processing of somatosensory information. We have previously shown in rodent models that activity in PO is tightly regulated by inhibitory inputs from a GABAergic nucleus known as the zona incerta (ZI). The level of incertal inhibition varies under both physiological and pathological conditions, leading to concomitant changes in PO activity. ⋯ Our model also predicts that modulation of ZI firing rate and synaptic GABA concentrations is an effective means to regulate the incerto-thalamic circuit. The coupling of distinct functions to GABAAR and GABABR presents an opportunity for the development of therapeutics, as particular aspects of incerto-thalamic regulation can be targeted by manipulating the corresponding receptor class. Thus these findings may provide interventions for pathologies of sensory processing.
-
The α2δ-ligands pregabalin (PGB) and gabapentin (GBP) are used to treat neuropathic pain. We used whole cell recording to study their long-term effects on substantia gelatinosa and dorsal root ganglion (DRG) neurons. Spinal cord slices were prepared from embryonic day 13 rat embryos and maintained in organotypic culture for >5 wk (neuronal age equivalent to young adult rats). ⋯ In substantia gelatinosa, 5-6 days of exposure to PGB was more effective in inhibiting excitatory synaptic drive to putative excitatory neurons than to putative inhibitory neurons. Although spontaneous inhibitory postsynaptic currents were also attenuated, the overall long-term effect of α2δ-ligands was to decrease network excitability as monitored by confocal Ca(2+) imaging. We suggest that selective actions of α2δ-ligands on populations of DRG neurons may predict their selective attenuation of excitatory transmission onto excitatory vs. inhibitory neurons in substantia gelatinosa.
-
Little is known about electrophysiological differences of A-type transient K(+) (KA) currents in nociceptive afferent neurons that innervate somatic and visceral tissues. Staining with isolectin B4 (IB4)-FITC classifies L6-S1 dorsal root ganglion (DRG) neurons into three populations with distinct staining intensities: negative to weak, moderate, and intense fluorescence signals. All IB4 intensely stained cells are negative for a fluorescent dye, Fast Blue (FB), injected into the bladder wall, whereas a fraction of somatic neurons labeled by FB, injected to the external urethral dermis, is intensely stained with IB4. ⋯ RT-PCRs detected Kv4.1 and the long isoform of Kv4.3 mRNAs without significant Kv4.2 mRNA in L6-S1 DRGs. Kv4.1 and Kv4.3 mRNA levels were higher in laser-captured, IB4-stained neurons than in bladder afferent neurons. These results indicate that PaTx2 acts differently on channels in the Kv4 family and that Kv4.1 and possibly Kv4.3 subunits functionally participate in the formation of KA channels in a subpopulation of somatic C-fiber neurons but not in visceral C-fiber neurons innervating the bladder.
-
Intramuscular injection of nerve growth factor (NGF) into rat masseter muscle induces a local mechanical sensitization that is greater in female than in male rats. The duration of NGF-induced sensitization in male and female rats was associated with an increase in peripheral N-methyl-d-aspartate (NMDA) receptor expression by masseter muscle afferent fibers that began 3 days postinjection. Here, we investigated the functional consequences of increased NMDA expression on the response properties of masseter muscle mechanoreceptors. ⋯ This suggests that preadministration of NGF had a different effect on slowly conducting mechanoreceptors in the female rats compared with the male rats. Although previous studies have found an association between estrogenic tone and NMDA activity, no correlation was observed between NMDA-evoked mechanical sensitization and plasma estrogen level. This study suggests NGF alters NMDA-induced mechanical sensitization in the peripheral endings of masseter mechanoreceptors in a sexually dimorphic manner.
-
Intrathecal administration of the neurotoxin bombesin-saporin reduces or abolishes pruritogen-evoked scratching behavior. We investigated whether spinal neurons that respond to intradermal (ID) injection of pruritogens also respond to spinal superfusion of bombesin and vice versa. Single-unit recordings were made from superficial lumbar spinal dorsal horn neurons in anesthetized mice. ⋯ Responses to successive applications of bombesin exhibited tachyphylaxis. In contrast, of 36 units responsive to noxious pinch, the majority (67%) did not respond to ID chloroquine or spinal bombesin. It is suggested that chloroquine- and bombesin-sensitive spinal neurons signal itch from the skin.