Life sciences
-
Biosensors are important devices in clinical diagnostics, food processing, and environmental monitoring for detecting various analytes, especially viruses. These biosensors provide rapid and effective instruments for qualitative and quantitative detection of infectious diseases in real-time. ⋯ Additionally, we will explain the mechanisms, advantages, and disadvantages of the most common biosensors that are currently used for viral detection, which could be optical (e.g., surface-enhanced Raman scattering (SERS), Surface plasmon resonance (SPR)) and electrochemical biosensors. Based on that, this review recommends methods for efficient, simple, low-cost, and rapid detection of SARS-CoV-2 (the causative agent of COVID-19) that employ the two types of biosensors depending on attaching hemoglobin β-chain and binding of specific antibodies with SARS-CoV-2 antigens, respectively.
-
The coronavirus disease 2019 (COVID-19) is caused by a novel coronavirus known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is associated with several fatal cases worldwide. The rapid spread of this pathogen and the increasing number of cases highlight the urgent development of vaccines. ⋯ Since its discovery in the 1990s, it has been of great interest because of its ability to elicit both humoral and cellular immune responses while showing relevant advantages regarding producibility, stability, and storage. This review aimed to summarize the current knowledge and advancements on DNA vaccines against COVID-19, particularly those in clinical trials.
-
Review
Cardioprotection of pharmacological postconditioning on myocardial ischemia/reperfusion injury.
Acute myocardial infarction is associated with high rates of morbidity and mortality and can cause irreversible myocardial damage. Timely reperfusion is critical to limit infarct size and salvage the ischemic myocardium. ⋯ Previous studies have shown that various mechanisms are involved in the effects of PPC. In this review, we summarize the relative effects and potential underlying mechanisms of PPC to provide a foundation for future research attempting to develop novel treatments against myocardial I/R injury.
-
The infection epidemic event of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was formally declared a pandemic by World Health Organization on March 11th, 2020. Corona Virus Disease 2019 (COVID-19) is caused by SARS-CoV-2, a new type of coronavirus, which has high contagion and mainly causes respiratory symptoms. ⋯ The factors such as directly pathogen-mediated damage to cardiomyocytes, down-regulated angiotensin-converting enzyme 2 (ACE2) expression, excessive inflammatory response, hypoxia and adverse drug reaction, are closely related to the occurrence and development of the course of COVID-19. In combination with recently published medical data of patients having SARS-CoV-2 infection and the latest studies, the manifestations of damage to cardiovascular system by COVID-19, possible pathogenic mechanisms and advances of the treatment are proposed in this article.
-
The outbreak of COVID-19 in December 2019, has become an urgent and serious public health emergency. At present, there is no effective treatment or vaccine for COVID-19. Therefore, there is a crucial unmet need to develop a safe and effective treatment for COVID-19 patients. ⋯ Moreover, the contribution of MSCs to prevent cell death and inhibit tissue fibrosis is well established. In the current review article, the potential mechanisms by which MSCs contribute to the treatment of COVID-19 patients are highlighted. Also, current trials that evaluated the potential of MSC-based treatments for COVID-19 are briefly reviewed.