Aaps Pharmscitech
-
Review
Radiation and ethylene oxide terminal sterilization experiences with drug eluting stent products.
Radiation and ethylene oxide terminal sterilization are the two most frequently used processes in the medical device industry to render product within the final sterile barrier package free from viable microorganisms. They are efficacious, safe, and efficient approaches to the manufacture of sterile product. Terminal sterilization is routinely applied to a wide variety of commodity healthcare products (drapes, gowns, etc.) and implantable medical devices (bare metal stents, heart valves, vessel closure devices, etc.) along with products used during implantation procedures (catheters, guidewires, etc.). ⋯ Guidance and examples of the application of terminal sterilization are discussed using experiences with drug eluting stents and bioresorbable vascular restoration devices. The examples provide insight into selecting the sterilization method, developing the process around it, and finally qualifying/validating the product in preparation for regulatory approval and commercialization. Future activities, including new sterilization technologies, are briefly discussed.
-
Novel advanced spray-dried inhalable trehalose microparticulate/nanoparticulate powders with low water content were successfully produced by organic solution advanced spray drying from dilute solution under various spray-drying conditions. Laser diffraction was used to determine the volumetric particle size and size distribution. Particle morphology and surface morphology was imaged and examined by scanning electron microscopy. ⋯ DSC thermal analysis indicated that the novel advanced spray-dried inhalable trehalose microparticles and nanoparticles exhibited a clear glass transition (T(g)). This is consistent with the formation of the amorphous glassy state. Spray-dried amorphous glassy trehalose inhalable microparticles and nanoparticles exhibited vapor-induced (lyotropic) phase transitions with varying levels of relative humidity as measured by gravimetric vapor sorption at 25°C and 37°C.
-
In pharmaceutical tablet manufacturing processes, a major source of disturbance affecting drug product quality is the (lot-to-lot) variability of the incoming raw materials. A novel modeling and process optimization strategy that compensates for raw material variability is presented. The approach involves building partial least squares models that combine raw material attributes and tablet process parameters and relate these to final tablet attributes. ⋯ In this way, the raw material variability, optimal process parameter space and tablet attributes are correlated with each other and offer the opportunity of simulating a variety of changes in silico without actually performing experiments. The connectivity obtained between the three sources of variability (materials, parameters, attributes) can be considered a design space consistent with Quality by Design principles, which is defined by the ICH-Q8 guidance (USDA 2006). The effectiveness of the methodologies is illustrated through a common industrial tablet manufacturing case study.