Plos One
-
Sporotrichosis is a chronic infectious disease affecting both humans and animals. For many years, this subcutaneous mycosis had been attributed to a single etiological agent; however, it is now known that this taxon consists of a complex of at least four pathogenic species, including Sporothrix schenckii and Sporothrix brasiliensis. Gp70 was previously shown to be an important antigen and adhesin expressed on the fungal cell surface and may have a key role in immunomodulation and host response. ⋯ In contrast, the highly virulent S. brasiliensis isolates showed reduced levels of cell wall gp70. These observations were confirmed by the topographical location of the gp70 antigen using immunoelectromicroscopy in both species. In addition, the gp70 molecule was sequenced and identified using mass spectrometry, and the sequenced peptides were aligned into predicted proteins using Blastp with the S. schenckii and S. brasiliensis genomes.
-
Neurosurgical therapeutic interventions include components that are presumed to be therapeutically inert, such as craniotomy and electrode implantation. Because these procedures may themselves exert neuroactive actions, with anecdotal evidence suggesting that craniotomy and electrode placement may have a particularly significant impact on epileptic seizures, the importance of their inclusion in sham control groups has become more compelling. Here we set out to test the hypothesis that craniotomy alone is sufficient to alter experimental seizures in rats. ⋯ We found that craniotomy significantly decreased the severity of experimental seizures on postoperative days 3, 6, and 10; this effect was dependent on the size of craniotomy. Animals with craniotomies returned to control seizure severity by 20 days post-craniotomy. These data support the hypothesis that damage to the skull is sufficient to cause a significant alteration in seizure susceptibility over an extended postoperative period, and indicate that this damage should not be considered neurologically inert.
-
Signal transducer and activator of transcription 3 (Stat3) is known to induce cell proliferation and inflammation by regulating gene transcription. Recent studies showed that Stat3 modulates nociceptive transmission by reducing spinal astrocyte proliferation. However, it is unclear whether Stat3 also contributes to the modulation of nociceptive transmission by regulating inflammatory response in spinal astrocytes. This study aimed at investigating the role of Stat3 on neuroinflammation during development of pain in rats after intrathecal injection of lipopolysaccharide (LPS). ⋯ Stat3 acted as a transcriptional regulator of reactive astrocytes by modulating chemokine expression. Stat3 regulated inflammatory response in astrocytes and contributed to pain modulation. Blockade of Stat3 represents a new target for pain control.
-
We investigated the influence of morphine and ketamine or clonidine in mice on the expression of genes that may mediate pronociceptive opioid effects. ⋯ The results indicate that co-administration of clonidine or ketamine may influence the underlying mechanisms of OIH.
-
Laminae I-III of the spinal dorsal horn contain many inhibitory interneurons that use GABA and/or glycine as a neurotransmitter. Distinct neurochemical populations can be recognised among these cells, and these populations are likely to have differing roles in inhibiting pain or itch. Quantitative studies in rat have shown that inhibitory interneurons account for 25-40% of all neurons in this region. ⋯ As in the rat, the sst2A receptor is only expressed by inhibitory interneurons in laminae I-II, and is present on just over half (54%) of these cells. Antibody against the neurokinin 1 receptor was used to define lamina I, and we found that although the receptor was concentrated in this lamina, it was expressed by many fewer cells than in the rat. By estimating the total numbers of neurons in each of these laminae in the L4 segment of the mouse, we show that there are around half as many neurons in each lamina as are present in the corresponding segment of the rat.