Vitam Horm
-
Review
The role of heat shock protein 90 in regulating pain, opioid signaling, and opioid antinociception.
Heat shock protein 90 (Hsp90) is one of the central signal transduction regulators of the cell. Via client interactions with hundreds of proteins, including receptors, receptor regulatory kinases, and downstream signaling regulators, Hsp90 has a crucial and wide-ranging impact on signaling in response to numerous drugs with impacts on resultant physiology and behavior. ⋯ We will also explore how Hsp90 regulates signaling and antinociceptive responses to opioid analgesic drugs, with a special emphasis on ERK MAPK signaling. Understanding this new and growing area will improve our understanding of how Hsp90 regulates signaling and physiology, and also may provide new ways to treat pain, and perhaps reduce the severe impact of the ongoing opioid addiction and overdose crisis.
-
Primary aldosteronism (PA), currently recognized to be 5-10% of hypertension, has a cardiovascular risk profile double that in age-, sex-, and blood pressure-matched essential hypertensives. Screening for PA is by determining the plasma aldosterone to renin ratio (ARR), followed by one of half a dozen confirmatory/exclusion tests. Unilateral hyperaldosteronism normally reflects an aldosterone producing adenoma; bilateral disease is the more common form, and termed idiopathic hyperaldosteronism (IHA). ⋯ The current reluctance to do so reflects the costs of AVS if PA is confirmed-optimally by a standard seated saline suppression test-followed by surgery or life-long MRAs. Increasingly AVS will be replaced by plasma steroid assays capable of discriminating APA from the far more common IAH. Third generation MRAs (as selective as eplerenone, as potent as spironolactone, non-steroidal) are in development; in the interim, to minimize side effects and maximize compliance, spironolactone dosage should be set at 12.5-25 mg/day.
-
The organization of estrogenic signaling in the CNS is exceedingly complex. It is comprised of peripherally and centrally synthesized estrogens, and a plethora of types of estrogen receptor that can localize to both the nucleus and the plasma membrane. Moreover, CNS estrogen receptors can exist independent of aromatase (aka estrogen synthase) as well as oligomerize with it, along with a host of other membrane signaling proteins. ⋯ This review highlights the increasing awareness that estrogens are major endogenous arbiters of both opioid analgesic actions and the mechanisms used to achieve them. This behooves us to understand, and possibly intercede at, the points of intersection of estrogenic signaling and opioid functionality. Factors that integrate estrogenic actions at subcellular, synaptic, and CNS regional levels are likely to be prime drug targets for novel pharmacotherapies designed to modulate CNS estrogen-dependent opioid functionalities and possibly circumvent the current opioid epidemic.
-
Since its discovery in 2001, there have been a number of important discoveries and findings that have increased our knowledge about the functioning of hepcidin. Hepcidin, the master iron regulator has been shown to be regulated by a number of physiological stimuli and their associated signaling pathways. This chapter will summarize our current understanding of how these physiological stimuli and downstream signaling molecules are involved in hepcidin modulation and ultimately contribute to the regulation of systemic or local iron homeostasis. The signaling pathways and molecules described here have been shown to primarily affect hepcidin at a transcriptional level, but these transcriptional changes correlate with changes in systemic iron levels as well, supporting the functional effects of hepcidin regulation by these signaling pathways.
-
The neuropeptide nociceptin/orphanin FQ (N/OFQ) is the endogenous ligand of the G-protein-coupled receptor NOP. Cells from the immune system express the precursor preproN/OFQ and the NOP receptor, as well as secrete N/OFQ. The activation of the N/OFQ-NOP pathway can regulate inflammatory and immune responses. ⋯ In fact, clinical studies revealed increased levels of N/OFQ under sepsis, arthritis, and Parkinson's disease. Preclinical and clinical studies pointed to the blockade of NOP receptor signaling as successful strategy for the treatment of inflammatory diseases. This review is focused on experimental and clinical data that suggest the participation of N/OFQ-NOP receptor activation in the modulation of the immune response, highlighting the immunomodulatory potential of NOP antagonists in the inflammatory and immunological disturbances.