Progress in brain research
-
Earlier studies suggested that while after spinal cord lesions and transplants at birth, the transplants serve both as a bridge and as a relay to restore supraspinal input caudal to the injury (Bregman, 1994), after injury in the adult the spinal cord transplants serve as a relay, but not as a bridge. We show here, that after complete spinal cord transection in adult rats, delayed spinal cord transplants and exogenous neurotrophic factors, the transplants can also serve as a bridge to restore supraspinal input (Fig. 9). We demonstrate here that when the delivery of transplants and neurotrophins are delayed until 2 weeks after spinal cord transection, the amount of axonal growth and the amount of recovery of function are dramatically increased. ⋯ In summary, the therapeutic intervention of tissue transplantation and exogenous neurotrophin support leads to improvements in supraspinal and propriospinal input across the transplant into the host caudal cord and a concomitant improvement in locomotor function. Paradoxically, delaying these interventions for several weeks after a spinal cord transection leads to dramatic improvements in recovery of function and a concomitant restoration of supraspinal input into the host caudal spinal cord. These findings suggest that opportunity for intervention after spinal cord injury may be far greater than originally envisioned, and that CNS neurons with long-standing injuries may be able to re-initiate growth leading to improvement in motor function.
-
The results from the language studies taken as a whole point to different developmental time courses and developmental vulnerabilities of aspects of grammatical and semantic/lexical processing. They thus provide support for conceptions of language that distinguish these subprocesses within language. Similarly, following auditory deprivation, processes associated with the dorsal visual pathway were more altered than were functions associated with the ventral pathway, providing support for conceptions of visual system organization that distinguish functions along these lines. ⋯ Further research is necessary to characterize systems that become constrained in this way and those that can be modified throughout life. This type of developmental evidence can contribute to fundamental descriptions of the architecture of different cognitive systems and can guide future studies of the cellular and molecular mechanisms important in neuroplasticity. Additionally, in the long run, they may contribute to the design of educational and habilitative programs for both normally and abnormally developing children.
-
Spinal cord injury is frequently followed by the loss of supraspinal control of sensory, autonomic and motor functions at the sublesional level. In order to enhance recovery in spinal cord-injured patients, we have developed three fundamental strategies in experimental models. These strategies define in turn three chronological levels of postlesional intervention in the spinal cord. ⋯ Finally a mid-term substitutive strategy is the management of the sublesional spinal cord by sensorimotor stimulation and/or supply of missing key afferents, such as monoaminergic systems. These three strategies are reviewed. Only a combination of these different approaches will be able to provide an optimal basis for potential therapeutic interventions directed to functional recovery after spinal cord injury.
-
Most human spinal cord injuries involve contusions of the spinal cord. Many investigators have long used weight-drop contusion animal models to study the pathophysiology and genetic responses of spinal cord injury. ⋯ The MASCIS Impactor is a well-standardized rat spinal cord contusion model that produces very consistent graded spinal cord damage that linearly predicts 24-h lesion volumes, 6-week white matter sparing, and locomotor recovery in rats. All aspects of the model, including anesthesia for male and female rats, age rather than body weight criteria, and arterial blood gases were empirically selected to enhance the consistency of injury.
-
Traumatic spinal cord injury is a consequence of a primary mechanical insult and a sequence of progressive secondary pathophysiological events that confound efforts to mitigate neurological deficits. Pharmacotherapy aimed at reducing the secondary injury is limited by a narrow therapeutic window. ⋯ As such, voltage-sensitive sodium channels are an important therapeutic target for the treatment of spinal cord trauma. This review describes the evolution of acute spinal cord injury and provides a rationale for the clinical utility of sodium channel blockers, particularly riluzole, in the management of spinal cord trauma.