Progress in brain research
-
Preterm birth is a risk factor for deficits of neurological and cognitive development. Four cohort studies are reported investigating the effects of very premature birth (<32 weeks gestation) on visual, visuocognitive and visuomotor function between birth and 6-7 years of age. The first study used two measures of early visual cortical function, orientation reversal visual event-related potentials (OR-VERP) and fixation shifts under competition. ⋯ Development was generally relatively normal on language tests and on WPPSI scores. Factor analysis showed that while general cognitive ability accounted for the largest part of the variance, significant deficits, and a relationship to MRI results, were primarily in spatial, motor, attention and executive function tests. A model is proposed suggesting that the cluster of deficits seen in children born prematurely may be related to networks involving the cortical dorsal stream and its connections to parietal, frontal and hippocampal areas.
-
Deliberate hyperthermia has been used clinically as experimental therapy for neoplastic and infectious diseases. Several case fatalities have occurred with this form of treatment, but most were attributable to systemic complications rather than central nervous system toxicity. Nonetheless, demyelating peripheral neuropathy and neurological symptoms of nausea, delirium, apathy, stupor, and coma have been reported. ⋯ Furthermore, in the neurosurgical intensive-care unit fever is extremely common whereas antipyretic therapy is only poorly effective. Therefore maintaining strict normothermia may be an impossible goal in many patients. Although there are several physiological arguments for avoiding exogenous hyperthermia in neurologically injured patients, there is no evidence that aggressive attempts at controlling spontaneous fever can improve clinical outcome.
-
Traumatic brain injury (TBI) represents one of most common disorders to the central nervous system (CNS). Despite significant efforts, though, an effective clinical treatment for TBI is not yet available. ⋯ In this paper, we review the available in vitro models to study TBI, discuss their biomechanical basis for human TBI, and review the findings from these in vitro models. Finally, we synthesize the current knowledge and point out possible future directions for this group of models, especially in the effort toward developing new therapies for the traumatically brain injured patient.
-
Traumatic brain injury (TBI) and traumatic spinal cord injury (SCI) are acquired when an external physical insult causes damage to the central nervous system (CNS). Functional disabilities resulting from CNS trauma are dependent upon the mode, severity, and anatomical location of the mechanical impact as well as the mechanical properties of the tissue. Although the biomechanical insult is the initiating factor in the pathophysiology of CNS trauma, the anatomical loading distribution and the resulting cellular responses are currently not well understood. ⋯ Correlation of insult parameters with cellular changes and subsequent deficits may lead to refined tolerance criteria and facilitate the development of improved protective gear. In addition, advancements in the understanding of injury biomechanics are essential for the development and interpretation of experimental studies at both the in vitro and in vivo levels and may lead to the development of new treatment approaches by determining injury mechanisms across the temporal spectrum of the injury response. Here we discuss basic concepts relevant to the biomechanics of CNS trauma, injury models used to experimentally simulate TBI and SCI, and novel multilevel approaches for improving the current understanding of primary damage mechanisms.
-
Fever is a common occurrence in patients following brain and spinal cord injury (SCI). In intensive care units, large numbers of patients demonstrate febrile periods during the first several days after injury. Over the last several years, experimental studies have reported the detrimental effects of fever in various models of central nervous system (CNS) injury. ⋯ Thus, increased emphasis on the ability to monitor CNS temperature and prevent periods of fever has gained increased attention in the clinical literature. Cooling blankets, body vests, and endovascular catheters have been shown to prevent elevations in body temperature in some patient populations. This chapter will summarize evidence regarding hyperthermia and CNS injury.