Resp Care
-
Oxygen is necessary for all aerobic life, and nothing is more important in respiratory care than its proper understanding, assessment, and administration. By the early 1970s P(aO(2)) had become the gold standard for clinically assessing oxygenation in the body. Since the 1980s the measurement of arterial oxygen saturation by pulse oximetry has also been increasingly used as an adjunct to (but not a replacement for) P(aO(2)). ⋯ In addition, the original goals of "normalizing" arterial oxygenation with high tidal volumes and lung-distending pressures have required modification as appreciation for ventilator-related lung injury has emerged. High concentrations of inspired oxygen may play a role in such injury, but aggressive measures to reduce them in order to avoid oxygen toxicity-which dominated ventilator management in previous decades-have been tempered in the present era of lung-protective ventilation. Although some additions and modifications have emerged, much of what we understand today about oxygen in respiratory care is owed to the pioneering work of Thomas L Petty more than 40 years ago.
-
The management of patients with traumatic brain injury has evolved in the last several years, due to the introduction of new, invasive monitoring devices. The ability to monitor parameters other than measurements related to pressures has generated substantial interest. Brain tissue oxygenation monitoring has been consistently shown to provide prognostic information, as indicated by poor prognosis associated with low brain tissue oxygen values. ⋯ Retrospective studies suggest benefit, while prospective studies have shown a higher intensity of therapeutic interventions with no outcome differences. Data from high quality randomized trials are necessary to determine if brain-oxygenation-guided therapy is beneficial. An oxygen challenge (transient increase in F(IO(2)) to 0.6 up to 1.0) to assess the responsiveness of the monitoring and ascertain the presence of technical malfunction is an accepted practice.
-
Oxygen use in prehospital care is aimed at treating or preventing hypoxemia. However, excess oxygen delivery has important consequences in select patients, and hyperoxia can adversely impact outcome. ⋯ Oxygen therapy in prehospital care should be provided to patients with hypoxemia and titrated to achieve normoxemia. Changes to the current practice of oxygen delivery in prehospital care are needed.
-
The nasal cannula has been a commonly used patient interface to provide supplemental oxygen since its introduction in the 1940s. Traditionally, it has been categorized as a low-flow device and capable of delivering a 0.4 F(IO(2)) with flows up to 6 L/min to adults with normal minute ventilation. However, there is considerable performance variability among patients and design, which results in an exponential decline in delivered F(IO(2)) as breathing frequencies increase. ⋯ HFNC therapy has also been considered valuable in perinatal care in treating the respiratory distress syndrome or supporting patients after extubation similar to nasal CPAP. At present, research-based evidence for the role of HFNC for its perinatal applications remains unclear. This review will identify proposed mechanisms for therapeutic effectiveness, current delivery equipment, guidelines for rational patient application, and direction for further research.
-
Oxygen therapy is extensively used in premature infants and adults with respiratory insufficiency. In the premature infant the goal during manual control of the F(IO(2)) is to maintain adequate oxygenation and to minimize the exposure to hypoxemia, hyperoxemia, and oxygen. However, this is frequently not achieved during routine care, which increases the risks of associated side effects affecting the eye, lungs, and central nervous system. ⋯ On the other hand, there are growing concerns related to unnecessarily high F(IO(2)) levels that increase the exposure to hyperoxemia and excessive oxygen use in settings where resources are limited. Systems for automated closed loop control of F(IO(2)) have been developed for use in neonates and adults. This paper will give an overview of the rationale for the development of these systems, present the evidence, and discuss important advantages and limitations.