Resp Care
-
Chest radiography and computed tomography (CT) have a crucial role to play in the diagnosis and management of acute respiratory distress syndrome (ARDS). The identification of pulmonary opacification is a requirement for the definition of ARDS on the chest radiograph, while CT has a role to play, not only in the diagnosis of ARDS, but also in the identification of complications. This paper reviews the radiological appearances of ARDS that have been documented for some time, and also more recent research that has identified a role for CT in directing ventilation and in prognostication.
-
Case Reports
Eosinophilic pneumonia associated with azacitidine in a patient with myelodysplastic syndrome.
Eosinophilic pneumonia is characterized by cough, lung infiltrates on imaging, and by the presence of eosinophils in the alveoli and pulmonary interstitium. Azacitidine, a pyramidine nucleoside analog of cytidine, is FDA approved for the treatment of various myelodysplastic syndromes. ⋯ Diagnosis of drug-induced eosinophilic pneumonia is established by having a temporal relationship between onset of symptoms and initiation of therapy, bronchoalveolar lavage or lung biopsy evidence of pulmonary eosinophilia, no other explanation for the disease, and improvement upon cessation of the offending agent. Our case illustrates the need for a high index of suspicion to identify adverse pulmonary reactions associated with newly developed medications.
-
Air-fluid levels within emphysematous lung bullae are a relatively uncommon occurrence in patients with preexisting bullous disease, and are not commonly reported. We report 2 cases of new onset air-fluid levels in patients with underlying bullous disease with substantially different clinical presentations but with clinical improvement after medical therapy only.
-
Using an electronic literature search for published articles indexed in PubMed between January 1990 and August 2011, the update of this clinical practice guideline is the result of reviewing 84 clinical trials, 54 reviews, 25 in vitro studies, and 7 evidence-based guidelines. The recommendations below are made following the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) criteria: 1: It is recommended that selection of the appropriate aerosol generator and interface be made based on the patient's age, physical and cognitive ability, cost, and the availability of the prescribed drug for use with a specific device. 2: Nebulizers and pressurized metered-dose inhalers (pMDIs) with valved holding chambers are suggested for use with children ≤ 4 years of age and adults who cannot coordinate the use of pMDI or dry-powder inhaler (DPI). 3: It is suggested that administration of aerosols with DPIs be restricted to patients ≥ 4 years of age who can demonstrate sufficient flow for the specific inhaler. 4: For patients who cannot correctly use a mouthpiece, aerosol masks are suggested as the interface of choice. 5: It is suggested that blow-by not be used for aerosol administration. 6: It is suggested that aerosol therapy be administered with a relaxed and nondistressed breathing pattern. 7: Unit dose medications are suggested to reduce the risk of infection. 8: It is suggested that nebulizer/drug combinations should be used as approved by the FDA. 9: It is recommended that healthcare providers know the correct use of aerosol generators; they should teach and periodically re-teach patients about how to use aerosol devices correctly. 10: It is suggested that intermittent positive-pressure breathing should not be used for aerosol therapy. 11: It is recommended that either nebulizer or pMDI can be used for aerosol delivery during noninvasive ventilation.
-
Choke points and airway wall structure in expiratory central airway collapse are poorly defined. Computed tomography, white light bronchoscopy, endobronchial ultrasound, vibration response imaging, spirometry, impulse oscillometry, negative expiratory pressure, and intraluminal catheter airway pressure measurements were used in a patient with cough, dyspnea, and recurrent pulmonary infections. Computed tomography and white light bronchoscopy identified dynamic collapse of the trachea and mainstem bronchi, consistent with severe crescent tracheobronchomalacia. ⋯ After Y-stent insertion, the choke point migrated distally. Imaging studies revealed improved airway dynamics, airway patency, and ventilatory function. Novel imaging and physiologic assessments could be used to localize choke points and airway wall structure in tracheobronchomalacia.