Resp Care
-
As the basis for this paper, it must be acknowledged that children are not simply small adults. But this acknowledgment must go further: infants are not simply small adolescents. ⋯ Hopefully, with the collaboration of multicenter investigator networks, additional and definitive pediatric data may be on the horizon. In the meantime, sharing data between adult and pediatric populations seems to be an essential approach to the management of critically ill patients.
-
Since the identification of surfactant deficiency as the putative cause of the infant respiratory distress syndrome (RDS) by Avery and Mead in 1959, our understanding of the role of pulmonary surfactant in respiratory physiology and the pathophysiology of acute lung injury (ALI) has advanced substantially. Surfactant replacement has become routine for the prevention and treatment of infant RDS and other causes of neonatal lung injury. The role of surfactant in lung injury beyond the neonatal period, however, has proven more complex. ⋯ Both animal and human studies suggest that direct types of ALI (eg, aspiration, pneumonia) may be more responsive to surfactant therapy than indirect lung injury (eg, sepsis, pancreatitis). Animal studies are needed, however, to further clarify aspects of drug composition, timing, delivery, and dosing before additional human trials are pursued, as the results of human trials to date have been inconsistent and largely disappointing. Further study and perhaps the development of more robust pharmaceutical surfactants offer promise that exogenous surfactant will find a place in our armamentarium of treatment of ALI/ARDS in the future.
-
Review Meta Analysis
Diagnostic accuracy of clinical pulmonary infection score for ventilator-associated pneumonia: a meta-analysis.
To assess the diagnostic accuracy of the clinical pulmonary infection score in the diagnosis of ventilator-associated pneumonia in mechanically ventilated patients. ⋯ The diagnostic performance of the clinical pulmonary infection score for ventilator-associated pneumonia is moderate. However, the clinical pulmonary infection score is simple and easy to perform, and may still be useful in diagnosing ventilator-associated pneumonia.
-
Pulmonary alveolar proteinosis is a rare but potentially treatable disease, characterized by impaired surfactant metabolism that leads to accumulation in the alveoli of proteinaceous material rich in surfactant protein and its component. Novel insights from an animal model aided the discovery of granulocyte macrophage colony stimulating factor (GM-CSF) antibodies as a pathogenetic mechanism in human pulmonary alveolar proteinosis. The vast majority of pulmonary alveolar proteinosis occurs as an autoimmune disease; less commonly, it is congenital or secondary to an underlying disorder such as infection, hematological malignancy, or immunodeficiency. ⋯ Correction of GM-CSF deficiency with exogenous GM-CSF is an alternative therapy. The combination of a systemic treatment (GM-CSF) and a local treatment (whole-lung lavage) augmenting the action of one another is a promising new approach. As the knowledge about this rare disease increases, the role of novel therapies is likely to be better defined and optimized.
-
Review
Optimizing the respiratory pump: harnessing inspiratory resistance to treat systemic hypotension.
We review the physiology and affects of inspiration through a low level of added resistance for the treatment of hypotension. Recent animal and clinical studies demonstrated that one of the body's natural response mechanisms to hypotension is to harness the respiratory pump to increase circulation. That finding is consistent with observations, in the 1960s, about the effect of lowering intrathoracic pressure on key physiological and hemodynamic variables. ⋯ While breathing has traditionally been thought primarily to provide gas exchange, studies of the mechanisms involved in animals and humans provide the physiological underpinnings for "the other side of breathing": to increase circulation to the heart and brain, especially in the setting of physiological stress. The existing results support the use of the intrathoracic pump to treat clinical conditions associated with hypotension, including orthostatic hypotension, hypotension during and after hemodialysis, hemorrhagic shock, heat stroke, septic shock, and cardiac arrest. Harnessing these fundamental mechanisms that control cardiopulmonary physiology provides new opportunities for respiratory therapists and others who have traditionally focused on ventilation to also help treat serious and often life-threatening circulatory disorders.