Resp Care
-
Mass casualty events and disasters, both natural and human-generated, occur frequently around the world and can generate scores of injured or ill victims in need of resources. Of the available medical supplies, oxygen remains the critical consumable resource in disaster management. Strategic management of oxygen supplies in disaster scenarios remains a priority. ⋯ The Strategic National Stockpile supplies medications, medical supplies, and equipment to disaster areas, but it does not supply oxygen. Contracted vendors can deliver oxygen to alternate care facilities in disaster areas, in the form of concentrators, compressed gas cylinders, and liquid oxygen. Planning for oxygen needs following a disaster still presents a substantial challenge, but alternate care facilities have proven to be valuable in relieving pressure from the mass influx of patients into hospitals, especially for those on home oxygen who require only an electrical source to power their oxygen concentrator.
-
Prolonged breathing of very high F(IO(2)) (F(IO(2)) ≥ 0.9) uniformly causes severe hyperoxic acute lung injury (HALI) and, without a reduction of F(IO(2)), is usually fatal. The severity of HALI is directly proportional to P(O(2)) (particularly above 450 mm Hg, or an F(IO(2)) of 0.6) and exposure duration. Hyperoxia produces extraordinary amounts of reactive O(2) species that overwhelms natural anti-oxidant defenses and destroys cellular structures through several pathways. ⋯ During the 1960s, confusion regarding the incidence and relevance of HALI largely reflected such issues as the primitive control of F(IO(2)), the absence of PEEP, and the fact that at the time both ALI and ventilator-induced lung injury were unknown. The advent of PEEP and precise control over F(IO(2)), as well as lung-protective ventilation, and other adjunctive therapies for severe hypoxemia, has greatly reduced the risk of HALI for the vast majority of patients requiring mechanical ventilation in the 21st century. However, a subset of patients with very severe ARDS requiring hyperoxic therapy is at substantial risk for developing HALI, therefore justifying the use of such adjunctive therapies.
-
The beneficial effects of ambulatory home oxygen have been demonstrated since the 1950s, when Cotes and Gibson gave oxygen to ambulatory COPD patients from small portable high pressures cylinders in the United Kingdom. Over the ensuing 7 decades, oxygen has been prescribed to millions of COPD patients in the home setting. Additionally, it is common clinical practice to prescribe supplemental oxygen when chronic hypoxemic respiratory failure not due to COPD (eg, interstitial lung disease, pulmonary hypertension, kyphoscoliosis, and cystic fibrosis) is present or in patients with hypoxemia at hospital discharge following flares of their underlying chronic respiratory disorder, without any substantial evidence. ⋯ Research conducted in the 1970s and 1980s still provides the basis for clinical decision making and insurance coverage policies regarding long-term oxygen administration. Remarkably, little current research is being conducted to extend our knowledge regarding the indications, mechanisms, and benefits of long-term oxygen therapy. This review will focus on our current knowledge of the end points for supplemental oxygen at home, such as mortality, effects on functional performance, sensation of dyspnea, cognitive function, and quality of life, and highlight areas where future research is needed.
-
The history of oxygen from discovery to clinical application for patients with chronic lung disease represents a long and storied journey. Within a relatively short period, early investigators not only discovered oxygen but also recognized its importance to life and its role in respiration. The application of oxygen to chronic lung disease, however, took several centuries. ⋯ It took brazen clinicians, however, to pursue oxygen as a therapeutic resource for patients with chronic lung disease because of the concern in the 20th century of the risks of oxygen toxicity. Application of ambulatory oxygen devices allowed landmark investigations of the long-term effects of continuous oxygen that established its safety and efficacy. Although now well established for hypoxic patients, many questions remain regarding the benefits of oxygen for varying severity and types of chronic lung disease.
-
The nasal cannula has been a commonly used patient interface to provide supplemental oxygen since its introduction in the 1940s. Traditionally, it has been categorized as a low-flow device and capable of delivering a 0.4 F(IO(2)) with flows up to 6 L/min to adults with normal minute ventilation. However, there is considerable performance variability among patients and design, which results in an exponential decline in delivered F(IO(2)) as breathing frequencies increase. ⋯ HFNC therapy has also been considered valuable in perinatal care in treating the respiratory distress syndrome or supporting patients after extubation similar to nasal CPAP. At present, research-based evidence for the role of HFNC for its perinatal applications remains unclear. This review will identify proposed mechanisms for therapeutic effectiveness, current delivery equipment, guidelines for rational patient application, and direction for further research.