Brain Stimul
-
Transcranial electric stimulation as used during intraoperative neurostimulation is dependent on electrode and skull impedances. ⋯ The mean stimulation current of the CMT along the extracranial to intracranial anodal trajectory followed a stepwise reduction. VMT was strongly dependent on electrode impedance. CMT within the skull layers was noted to have relative strong shunting currents in scalp layers.
-
Transcranial direct current stimulation (tDCS) is a neuromodulatory technique with the potential to enhance the efficacy of traditional therapies such as neuromuscular electrical stimulation (NMES). Yet, concurrent application of tDCS/NMES may also activate homeostatic mechanisms that block or reverse effects on corticomotor excitability. It is unknown how tDCS and NMES interact in the human primary motor cortex (M1) and whether effects are summative (increase corticomotor excitability beyond that of tDCS or NMES applied alone) or competitive (block or reduce corticomotor excitability effects of tDCS or NMES applied alone). ⋯ These novel findings highlight the complex mechanisms involved when two neuromodulatory techniques are combined and suggest that careful testing of combined interventions is necessary before application in clinical contexts.
-
Deep brain stimulation (DBS) has emerged as a potential therapeutic strategy in the treatment of neurological disorders including epilepsy. However, the cellular mechanism responsible for the effects of DBS remains largely undefined. Therefore, using electrophysiological approach, we aimed to determine the antiepileptic effects and restorative potential of low frequency stimulation (LFS) on amygdala kindling-induced changes in electrophysiological properties of rat hippocampal CA1 pyramidal neurons. ⋯ The results of this study implied that application of LFS during kindling acquisition prevents the kindling induced changes in functional electrical properties of CA1 pyramidal neurons, suggesting that this action may be involved in the antiepileptogenic mechanism of LFS.
-
Randomized Controlled Trial
Effect of two weeks of rTMS on brain activity in healthy subjects during an n-back task: a randomized double blind study.
Repetitive transcranial magnetic stimulation (rTMS) has shown significant efficiency in the treatment of several psychiatric disorders. In depressive disorders, the dorsolateral prefrontal cortex (DLPFC) is the main target for rTMS, but the effects of this stimulation on cognitive functions and their neural correlates are not well known. Previous works have established that the left DLPFC is reliably activated during the n-back working memory task. ⋯ These results show that rTMS applied on the left DLPFC had close and remote effects on brain areas involved in working memory.
-
Randomized Controlled Trial
Transcranial direct current stimulation ameliorates tactile sensory deficit in multiple sclerosis.
Deficit of tactile sensation in patients with MS is frequent and can be associated with interference with daily life activities. Transcranial direct current stimulation (tDCS) showed to increase tactile discrimination in healthy subjects. ⋯ Our results indicate that a five day course of anodal tDCS is able to ameliorate tactile sensory loss with long-lasting beneficial effects and could thus represent a therapeutic tool for the treatment of tactile sensory deficit in MS patients.