Mbio
-
The four dengue virus serotypes (DENV1 to 4) cause dengue, a major public health problem worldwide. Individuals exposed to primary DENV infections develop serotype-specific neutralizing antibodies, including strongly neutralizing antibodies targeting quaternary epitopes. To date, no studies have measured the levels and kinetics of serum antibodies directed to such epitopes among populations in regions where dengue is endemic. ⋯ Here, we use hospital and cohort studies in a region where dengue is endemic to assess the proportion and kinetics of the DENV3 neutralizing antibody response directed to a quaternary epitope on DENV3 recognized by strongly neutralizing human monoclonal antibody 5J7, which was transplanted into a DENV4 backbone. We show that many individuals recognized the 5J7 epitope, but to various degrees over time, suggesting that additional DENV3-specific epitopes likely exist. Thus, characterization of epitope-specific neutralizing antibody responses in natural DENV infections can help define the footprint and repertoire of antibodies directed to DENV3 type-specific epitopes, with implications for dengue vaccine development.
-
Obesity is a risk factor for developing severe disease following influenza virus infection; however, the comorbidity of obesity and secondary bacterial infection, a serious complication of influenza virus infections, is unknown. To fill this gap in knowledge, lean and obese C57BL/6 mice were infected with a nonlethal dose of influenza virus followed by a nonlethal dose of Streptococcus pneumoniae Strikingly, not only did significantly enhanced death occur in obese coinfected mice compared to lean controls, but also high mortality was seen irrespective of influenza virus strain, bacterial strain, or timing of coinfection. This result was unexpected, given that most influenza virus strains, especially seasonal human A and B viruses, are nonlethal in this model. ⋯ Our studies utilized a coinfection model to show that obesity increases mortality from secondary bacterial infection following influenza virus challenge through a "perfect storm" of host factors that lead to excessive viral and bacterial outgrowth. In addition, we found that vaccination of obese mice against either virus or bacteria failed to confer protection against coinfection, but antibiotic treatment did alleviate mortality. Combined, these results represent an understudied and imminent public health concern in a weighty portion of the global population.