Mbio
-
Randomized Controlled Trial
Complete Microbiota Engraftment Is Not Essential for Recovery from Recurrent Clostridium difficile Infection following Fecal Microbiota Transplantation.
Bacterial communities from subjects treated for recurrent Clostridium difficile infection (rCDI) by fecal microbiota transplantation (FMT), using either heterologous donor stool samples or autologous stool samples, were characterized by Illumina next-generation sequencing. As previously reported, the success of heterologous FMT (90%) was superior to that of autologous FMT (43%) (P = 0.019), and post-FMT intestinal bacterial communities differed significantly between treatment arms (P < 0.001). Subjects cured by autologous FMT typically had greater abundances of the Clostridium XIVa clade and Holdemania bacteria prior to treatment, and the relative abundances of these groups increased significantly after FMT compared to heterologous FMT and pre-FMT samples. ⋯ Autologous FMT patient bacterial communities were significantly different in composition than those for heterologous FMT patients and donors (P < 0.001). The SourceTracker program, which employs a Bayesian algorithm to determine source contributions to sink communities, showed that patients initially treated by heterologous FMT had significantly higher percentages of engraftment (i.e., similarity to donor communities, mean value of 74%) compared to those who suffered recurrence following autologous FMT (1%) (P ≤ 0.013). The findings of this study suggest that complete donor engraftment may be not necessary if functionally critical taxa are present in subjects following antibiotic therapy.
-
Randomized Controlled Trial
Twice-daily application of HIV microbicides alter the vaginal microbiota.
Vaginal HIV microbicides offer great promise in preventing HIV transmission, but failures of phase 3 clinical trials, in which microbicide-treated subjects had an increased risk of HIV transmission, raised concerns about endpoints used to evaluate microbicide safety. A possible explanation for the increased transmission risk is that the agents shifted the vaginal bacterial community, resulting in loss of natural protection and enhanced HIV transmission susceptibility. We characterized vaginal microbiota, using pyrosequencing of bar-coded 16S rRNA gene fragments, in samples from 35 healthy, sexually abstinent female volunteer subjects (ages 18 to 50 years) with regular menses in a repeat phase 1 study of twice-daily application over 13.5 days of 1 of 3 gel products: a hydroxyethylcellulose (HEC)-based "universal" placebo (10 subjects), 6% cellulose sulfate (CS; 13 subjects), and 4% nonoxynol-9 (N-9; 12 subjects). We used mixed effects models inferred using Bayesian Markov chain Monte Carlo methods, which showed that treatment with active agents shifted the microbiota toward a community type lacking significant numbers of Lactobacillus spp. and dominated by strict anaerobes. This state of the vaginal microbiota was associated with a low or intermediate Nugent score and was not identical to bacterial vaginosis, an HIV transmission risk factor. The placebo arm contained a higher proportion of communities dominated by Lactobacillus spp., particularly L. crispatus, throughout treatment. The data suggest that molecular evaluation of microbicide effects on vaginal microbiota may be a critical endpoint that should be incorporated in early clinical assessment of microbicide candidates. ⋯ Despite large prevention efforts, HIV transmission and acquisition rates remain unacceptably high. In developing countries, transmission mainly occurs through heterosexual intercourse, where women are significantly more vulnerable to infection than men. Vaginal microbicides are considered to be one of the most promising female-controlled products, in that women themselves insert the microbicides into the vagina to prevent HIV transmission during sexual intercourse. The failure of several microbicides in clinical trials has raised questions concerning the low in vivo efficacy of such anti-HIV molecules. This study was designed to gain insights into the failures of two microbicides by testing the hypothesis that the microbicides negatively affect a critical line of defense against HIV, the vaginal microbiota. The results suggest that in the early assessment of candidate microbicides, culture-independent evaluation of their effect on the vaginal microbiota should be considered and may constitute a critical endpoint.