Bmc Neurosci
-
Comparative Study
Amygdalar glutamatergic neuronal systems play a key role on the hibernating state of hamsters.
Excitatory transmitting mechanisms are proving to play a critical role on neuronal homeostasis conditions of facultative hibernators such as the Syrian golden hamster. Indeed works have shown that the glutamatergic system of the main olfactory brain station (amygdala) is capable of controlling thermoregulatory responses, which are considered vital for the different hibernating states. In the present study the role of amygdalar glutamatergic circuits on non-hibernating (NHIB) and hibernating (HIB) hamsters were assessed on drinking stimuli and subsequently compared to expression variations of some glutamatergic subtype mRNA levels in limbic areas. For this study the two major glutamatergic antagonists and namely that of N-methyl-D-aspartate receptor (NMDAR), 3-(+)-2-carboxypiperazin-4-yl-propyl-1-phosphonate (CPP) plus that of the acid α-amine-3-hydroxy-5-methyl-4-isoxazol-propionic receptor (AMPAR) site, cyano-7-nitro-quinoxaline-2,3-dione (CNQX) were infused into the basolateral amygdala nucleus. Attempts were made to establish the type of effects evoked by amygdalar glutamatergic cross-talking processes during drinking stimuli, a response that may corroborate their major role at least during some stages of this physiological activity in hibernators. ⋯ We conclude that predominant drinking events evoked by glutamatergic mechanisms, in the presence of prevalently down regulated levels of NR1/2A of some telencephalic and hypothalamic areas appear to constitute an important neuronal switch at least during arousal stage of hibernation. The establishment of the type of glutamatergic subtypes that are linked to successful hibernating states, via drinking stimuli, may have useful bearings toward sleeping disorders.
-
It is difficult to repair nerve if proximal stump is unavailable or autogenous nerve grafts are insufficient for reconstructing extensive nerve damage. Therefore, alternative methods have been developed, including lateral anastomosis based on axons' ability to send out collateral sprouts into denervated nerve. The different capacity of a sensory or motor axon to send a sprout is controversial and may be controlled by cytokines and/or neurotrophic factors like ciliary neurotrophic factor (CNTF). The aim of the present study was to quantitatively assess collateral sprouts sent out by intact motor and sensory axons in the end-to-side neurorrhaphy model following intrathecal administration of CNTF in comparison with phosphate buffered saline (vehiculum) and Cerebrolysin. The distal stump of rat transected musculocutaneous nerve (MCN) was attached in an end-to-side fashion with ulnar nerve. CNTF, Cerebrolysin and vehiculum were administered intrathecally for 2 weeks, and all animals were allowed to survive for 2 months from operation. Numbers of spinal motor and dorsal root ganglia neurons were estimated following their retrograde labeling by Fluoro-Ruby and Fluoro-Emerald applied to ulnar and musculocutaneous nerve, respectively. Reinnervation of biceps brachii muscles was assessed by electromyography, behavioral test, and diameter and myelin sheath thickness of regenerated axons. ⋯ The present experimental study confirms end-to-side neurorrhaphy as an alternative method for reconstructing severed peripheral nerves. CNTF promotes motor reinnervation of the MCN stump after its end-to-side neurorrhaphy with ulnar nerve and improves functional recovery of the biceps brachii muscle.
-
The motor-driven predictions about expected sensory feedback (efference copies) have been proposed to play an important role in recognition of sensory consequences of self-produced motor actions. In the auditory system, this effect was suggested to result in suppression of sensory neural responses to self-produced voices that are predicted by the efference copies during vocal production in comparison with passive listening to the playback of the identical self-vocalizations. In the present study, event-related potentials (ERPs) were recorded in response to upward pitch shift stimuli (PSS) with five different magnitudes (0, +50, +100, +200 and +400 cents) at voice onset during active vocal production and passive listening to the playback. ⋯ Findings of the present study suggest that the brain utilizes the motor predictions (efference copies) to determine the source of incoming stimuli and maximally suppresses the auditory responses to unaltered feedback of self-vocalizations. The reduction of suppression for 50, 100 and 200 cents and its elimination for 400 cents pitch-shifted voice auditory feedback support the idea that motor-driven suppression of voice feedback leads to distinctly different sensory neural processing of self vs. non-self vocalizations. This characteristic may enable the audio-vocal system to more effectively detect and correct for unexpected errors in the feedback of self-produced voice pitch compared with externally-generated sounds.
-
Inhibitors of 3-hydroxy-3-methylglutaryl-coenzyme A reductase, known as statins, are commonly used as cholesterol-lowering drugs. During the past decade, evidence has emerged that statins also have neuroprotective effects. Research in the retina has shown that simvastatin, a commonly used statin, increases Akt phosphorylation in vivo, indicating that the PI3K/Akt pathway contributes to the protective effects achieved. While research about neuroprotective effects have been conducted in several systems, the effects of statins on the inner ear are largely unknown. ⋯ These results suggest a neuroprotective effect of statins in the inner ear, mediated by reduced 3-hydroxy-3-methylglutaryl-coenzyme A reductase metabolism and Akt activation.
-
Neuronal mechanisms underlying affective disorders such as major depression (MD) are still poorly understood. By selectively breeding mice for high (HR), intermediate (IR), or low (LR) reactivity of the hypothalamic-pituitary-adrenocortical (HPA) axis, we recently established a new genetic animal model of extremes in stress reactivity (SR). Studies characterizing this SR mouse model on the behavioral, endocrine, and neurobiological levels revealed several similarities with key endophenotypes observed in MD patients. HR mice were shown to have changes in rhythmicity and sleep measures such as rapid eye movement sleep (REMS) and non-REM sleep (NREMS) as well as in slow wave activity, indicative of reduced sleep efficacy and increased REMS. In the present study we were interested in how far a detailed spectral analysis of several electroencephalogram (EEG) parameters, including relevant frequency bands, could reveal further alterations of sleep architecture in this animal model. Eight adult males of each of the three breeding lines were equipped with epidural EEG and intramuscular electromyogram (EMG) electrodes. After recovery, EEG and EMG recordings were performed for two days. ⋯ The HR mice, i.e. those animals that have a genetic predisposition to hyper-activating their HPA axis in response to stressors, showed disturbed patterns in sleep architecture, similar to what is known from depressed patients. Significant alterations in several frequency bands of the EEG, which also seem to at least partly mimic clinical observations, suggest the SR mouse lines as a promising animal model for basic research of mechanisms underlying sleep impairments in MD.