Mol Pain
-
Glutamate receptors of the AMPA type (AMPArs) mediate fast excitatory transmission in the dorsal horn and are thought to underlie perception of both acute and chronic pain. They are tetrameric structures made up from 4 subunits (GluR1-4), and subunit composition determines properties of the receptor. Antigen retrieval with pepsin can be used to reveal the receptors with immunocytochemistry, and in this study we have investigated the subunit composition at synapses within laminae I-III of the dorsal horn. In addition, we have compared staining of AMPArs with that for PSD-95, a major constituent of glutamatergic synapses. We also examined tissue from knock-out mice to confirm the validity of the immunostaining. ⋯ Our results suggest that virtually all glutamatergic synapses in laminae I-III of adult rat spinal cord contain AMPArs. They show that synapses in laminae I-II contain GluR2 together with GluR1 and/or GluR3, while the long form of GluR4 is restricted to specific neuronal populations, which may include some lamina I projection cells. They also provide further evidence that immunostaining for AMPAr subunits following antigen retrieval is a reliable method for detecting these receptors at glutamatergic synapses.
-
Primary erythromelalgia is an autosomal dominant pain disorder characterized by burning pain and skin redness in the extremities, with onset of symptoms during the first decade in the families whose mutations have been physiologically studied to date. Several mutations of voltage-gated Na+ channel NaV1.7 have been linked with primary erythromelalgia. Recently, a new substitution Na(v)1.7/I136V has been reported in a Taiwanese family, in which pain appeared at later ages (9-22 years, with onset at 17 years of age or later in 5 of 7 family members), with relatively slow progression (8-10 years) to involvement of the hands. The proband reported onset of symptoms first in his feet at the age of 11, which then progressed to his hands at the age of 19. The new mutation is located in transmembrane segment 1 (S1) of domain I (DI) in contrast to all Na(v)1.7 mutations reported to date, which have been localized in the voltage sensor S4, the linker joining segments S4 and S5 or pore-lining segments S5 and S6 in DI, II and III. ⋯ The I136V substitution in Na(v)1.7 alters channel gating and kinetic properties. Each of these changes may contribute to increased excitability of nociceptive dorsal root ganglion neurons, which underlies pain in erythromelalgia. The smaller shift in voltage-dependence of activation of Na(v)1.7, compared to the other reported cases of inherited erythromelalgia, may contribute to the later age of onset and slower progression of the symptoms reported in association with this mutation.
-
The laterocapsular division of the central nucleus of the amygdala (CeLC) has emerged as an important site of pain-related plasticity and pain modulation. Glutamate and neuropeptide receptors in the CeLC contribute to synaptic and behavioral changes in the arthritis pain model, but the intracellular signaling pathways remain to be determined. This study addressed the role of PKA, PKC, and ERK in the CeLC. ⋯ Administration of KT5720 (100 microM, concentration in microdialysis probe) or U0126 (100 microM) into the CeLC, but not striatum (placement control), inhibited audible and ultrasonic vocalizations and spinal reflexes of arthritic rats but had no effect in normal animals. GF109203x (100 microM) and U0124 (100 microM) did not affect pain behavior. The data suggest that in the amygdala PKA and ERK, but not PKC, contribute to pain-related synaptic facilitation and behavior by increasing NMDA receptor function through independent signaling pathways.
-
Adenosine 5'-triphosphate (ATP) has a ubiquitous role in metabolism and a major role in pain responses after tissue injury. We investigated the changes in basal and KCl-evoked ATP release from rat dorsal root ganglia (DRG) after peripheral neuropathy induction by unilateral sciatic nerve entrapment (SNE). ⋯ These data suggest that peripheral nerve entrapment increases DRG metabolism and ATP release, which in turn is modulated by increased A1R activation.
-
Genetic variation contributes to differences in pain sensitivity and response to different analgesics. Catecholamines are involved in the modulation of pain and are partly metabolized by the catechol-O-methyltransferase (COMT) enzyme. Genetic variability in the COMT gene may therefore contribute to differences in pain sensitivity and response to analgesics. It is shown that a polymorphism in the COMT gene, Rs4680 (Val158Met), influence pain sensitivity in human experimental pain and the efficacy for morphine in cancer pain treatment. In this study we wanted to investigate if variability in other regions in the COMT gene also contributes to interindividual variability in morphine efficacy. ⋯ This study suggests that genetic variability in the COMT gene influence the efficacy of morphine in cancer patients with pain, and that increased understanding of this variability is reached by expanding from analyses of single SNPs to haplotype construction and analyses.