Mol Pain
-
Glutamate receptors of the AMPA type (AMPArs) mediate fast excitatory transmission in the dorsal horn and are thought to underlie perception of both acute and chronic pain. They are tetrameric structures made up from 4 subunits (GluR1-4), and subunit composition determines properties of the receptor. Antigen retrieval with pepsin can be used to reveal the receptors with immunocytochemistry, and in this study we have investigated the subunit composition at synapses within laminae I-III of the dorsal horn. In addition, we have compared staining of AMPArs with that for PSD-95, a major constituent of glutamatergic synapses. We also examined tissue from knock-out mice to confirm the validity of the immunostaining. ⋯ Our results suggest that virtually all glutamatergic synapses in laminae I-III of adult rat spinal cord contain AMPArs. They show that synapses in laminae I-II contain GluR2 together with GluR1 and/or GluR3, while the long form of GluR4 is restricted to specific neuronal populations, which may include some lamina I projection cells. They also provide further evidence that immunostaining for AMPAr subunits following antigen retrieval is a reliable method for detecting these receptors at glutamatergic synapses.
-
Primary erythromelalgia is an autosomal dominant pain disorder characterized by burning pain and skin redness in the extremities, with onset of symptoms during the first decade in the families whose mutations have been physiologically studied to date. Several mutations of voltage-gated Na+ channel NaV1.7 have been linked with primary erythromelalgia. Recently, a new substitution Na(v)1.7/I136V has been reported in a Taiwanese family, in which pain appeared at later ages (9-22 years, with onset at 17 years of age or later in 5 of 7 family members), with relatively slow progression (8-10 years) to involvement of the hands. The proband reported onset of symptoms first in his feet at the age of 11, which then progressed to his hands at the age of 19. The new mutation is located in transmembrane segment 1 (S1) of domain I (DI) in contrast to all Na(v)1.7 mutations reported to date, which have been localized in the voltage sensor S4, the linker joining segments S4 and S5 or pore-lining segments S5 and S6 in DI, II and III. ⋯ The I136V substitution in Na(v)1.7 alters channel gating and kinetic properties. Each of these changes may contribute to increased excitability of nociceptive dorsal root ganglion neurons, which underlies pain in erythromelalgia. The smaller shift in voltage-dependence of activation of Na(v)1.7, compared to the other reported cases of inherited erythromelalgia, may contribute to the later age of onset and slower progression of the symptoms reported in association with this mutation.
-
Adenosine 5'-triphosphate (ATP) has a ubiquitous role in metabolism and a major role in pain responses after tissue injury. We investigated the changes in basal and KCl-evoked ATP release from rat dorsal root ganglia (DRG) after peripheral neuropathy induction by unilateral sciatic nerve entrapment (SNE). ⋯ These data suggest that peripheral nerve entrapment increases DRG metabolism and ATP release, which in turn is modulated by increased A1R activation.
-
Current evidence suggests an analgesic role for the spinal cord action of general anesthetics; however, the cellular population and intracellular mechanisms underlying anti-visceral pain by general anesthetics still remain unclear. It is known that visceral nociceptive signals are transmited via post-synaptic dorsal column (PSDC) and spinothalamic tract (STT) neuronal pathways and that the PSDC pathway plays a major role in visceral nociception. ⋯ We propose the hypothesis that general anesthetics might affect critical molecular targets such as NK-1 and glutamate receptors, as well as intracellular signaling by CaM kinase II, protein kinase C (PKC), PKA, and MAP kinase cascades in PSDC neurons, which contribute to the neurotransmission of visceral pain signaling. This would help elucidate the mechanism of antivisceral nociception by general anesthetics at the cellular and molecular levels and aid in development of novel therapeutic strategies to improve clinical management of visceral pain.
-
The glial glutamate transporter GLT-1 is abundantly expressed in astrocytes and is crucial for glutamate removal from the synaptic cleft. Decreases in glutamate uptake activity and expression of spinal glutamate transporters are reported in animal models of pathological pain. However, the lack of available specific inhibitors and/or activators for GLT-1 makes it difficult to determine the roles of spinal GLT-1 in inflammatory and neuropathic pain. In this study, we examined the effect of gene transfer of GLT-1 into the spinal cord with recombinant adenoviruses on the inflammatory and neuropathic pain in rats. ⋯ These results suggest that overexpression of GLT-1 on astrocytes in the spinal cord by recombinant adenoviruses attenuates the induction, but not maintenance, of inflammatory and neuropathic pain, probably by preventing the induction of central sensitization, without affecting acute pain sensation. Upregulation or functional enhancement of spinal GLT-1 could be a novel strategy for the prevention of pathological pain.