Mol Pain
-
Substance P (SP) and calcitonin gene-related peptide (CGRP) have both been considered potential drug candidates in migraine therapy. In recent years, CGRP receptor inhibition has been established as an effective treatment, in particular as a prophylactic for chronic migraine. Curiously, inhibition of neurokinin receptor 1 (NK1R) failed to alleviate acute migraine attacks in clinical trials, and the neurokinins were consequently abandoned as potential antimigraine candidates. ⋯ ELISA results established that SP can be released locally from trigeminovascular system. The released SP was comparatively minor compared to the CGRP release from stimulated dura mater, trigeminal ganglion neurons and fibres. We hypothesize that SP and CGRP signalling pathways may work in tandem to exacerbate painful stimuli in the TGV system.
-
Recent reports suggest pain from surgical injury may influence the risks associated with exposure to opioids. In mice, hind-paw incision attenuates morphine-primed reinstatement due to kappa opioid receptor activation by dynorphin. In this focused group of studies, we examined the hypotheses that kappa-opioid receptor activation in the nucleus accumbens mediates attenuated drug- primed reinstatement after incisional surgery, and the G-protein biased mu-opioid agonist, oliceridine, leads to less priming of the dynorphin effect in comparison to morphine. ⋯ Persistently elevated levels of prodynorphin expression in the medial prefrontal cortex and nucleus accumbens were observed in the incised morphine-treated animals. However, both behavioral and molecular changes were absent in animals with incisional injury conditioned with oliceridine. These findings suggest a role for prodynorphin expression in the nucleus accumbens with exposure to morphine after surgery that may protect individuals from relapse not shared with biased mu- opioid receptor agonists.
-
Neuropathic pain is a severe problem that is difficult to treat clinically. Reducing abnormal remodeling of dendritic spines/synapses and increasing the anti-inflammatory effects in the spinal cord dorsal horn are potential methods to treat this disease. Previous studies have reported that electroacupuncture (EA) could increase the pain threshold after peripheral nerve injury. ⋯ In contrast to the beneficial effects of EA, BzATP enhanced abnormal remodeling of dendritic spines/synapses and inflammation. Furthermore, the EA-mediated positive effects were reversed by BzATP, which is consistent with the increased P2X7R expression. These findings indicated that EA improves neuropathic pain by reducing abnormal dendritic spine/synaptic reconstruction and inflammation via suppressing P2X7R expression.
-
Neuropeptide W (NPW) messenger ribonucleic acid (mRNA) and NPBW1 and/or NPBW2 mRNA are expressed in the descending pain inhibitory system. In the present study, we examined whether NPW microinjected into the descending pain inhibitory system, such as the periaqueductal gray (PAG), locus coeruleus (LC), and rostral ventromedial medulla (RVM), produces an analgesic effect using a rat formalin test. Microinjections of NPW into the PAG ipsilateral and contralateral to the formalin-injected side, LC ipsilateral and contralateral to the formalin-injected side, and RVM produced an analgesic effect. ⋯ In the contralateral LC study, the analgesic effect was antagonized by prazosin, idazoxan, SB269970, and naloxone. The analgesic effect was antagonized by WAY100135, SB269970, idazoxan, and naloxone in the ipsilateral and contralateral PAG studies. These findings strongly suggest that NPBW1/W2 activation by NPW microinjection into the RVM, LC, and PAG affect the descending pain modulatory system and produce anti-nociceptive and pro-nociceptive effects in the rat formalin test.
-
Spinal GABAergic neurons act as a critical modulator in sensory transmission like pain or itch. The monosynaptic or polysynaptic primary afferent inputs onto GABAergic neurons, along with other interneurons or projection neurons make up the direct and feed-forward inhibitory neural circuits. Previous research indicates that spinal GABAergic neurons mainly receive excitatory inputs from Aδ and C fibers. However, whether they are controlled by other inhibitory sending signals is not well understood. ⋯ These results indicated that spinal GABAergic inhibitory neurons are under feedforward inhibitory control driven by primary C and Aδ fibers, suggesting that this feed-forward inhibitory pathway may play an important role in balancing the excitability of GABAergic neurons in spinal dorsal horn.