Mol Pain
-
Parkinson's disease is the second most common neurodegenerative disorder after Alzheimer's disease. Chronic pain is experienced by the vast majority of patients living with Parkinson's disease. The degeneration of dopaminergic neuron acts as the essential mechanism of Parkinson's disease in the midbrain dopaminergic pathway. ⋯ Key cortical areas, such as the anterior cingulate cortex (ACC) and insular cortex (IC) that receive the dopaminergic projections are involved in pain transmission. Dopamine changes synaptic transmission via several pathway, for example the D2-adenly cyclase (AC)-cyclic AMP (cAMP)-protein kinase A (PKA) pathway and D1-G protein-coupled receptor kinase 2 (GRK2)-fragile X mental retardation protein (FMRP) pathway. The management of Parkinson's disease-related pain implicates maintenance of stable level of dopaminergic drugs and analgesics, however a more selective drug targeting at key molecules in Parkinson's disease-related pain remains to be investigated.
-
Neuropathic pain (NP) is a common symptom in many diseases of the somatosensory nervous system, which severely affects the patient's quality of life. Epigenetics are heritable alterations in gene expression that do not cause permanent changes in the DNA sequence. Epigenetic modifications can affect gene expression and function and can also mediate crosstalk between genes and the environment. ⋯ In this review, we focus on the current knowledge of epigenetic modifications in the development and maintenance of NP. Then, we illustrate different facets of epigenetic modifications that regulate gene expression and their crosstalk. Finally, we discuss the burgeoning evidence supporting the potential of emerging epigenetic therapies, which has been valuable in understanding mechanisms and offers novel and potent targets for NP therapy.
-
Trigeminal neuralgia (TN) is a severe facial pain disease of unknown cause and unclear genetic background. To examine the existing knowledge about genetics in TN, we performed a systematic study asking about the prevalence of familial trigeminal neuralgia, and which genes that have been identified in human TN studies and in animal models of trigeminal pain. MedLine, Embase, Cochrane Library and Web of Science were searched from inception to January 2021. 71 studies were included in the systematic review. ⋯ Their role in familial TN still needs to be addressed. The experimental animal studies suggest an emerging role of genetics in trigeminal pain, though the animal models may be more relevant for trigeminal neuropathic pain than TN per se. In summary, this systematic review suggests a more important role of genetic factors in TN pathogenesis than previously assumed.
-
Complex regional pain syndrome (CRPS) is a progressive and painful disease of the extremities that is characterized by continuous pain inconsistent with the initial trauma. CRPS is caused by a multi-mechanism process that involves both the peripheral and central nervous system, with a prominent role of inflammation in CRPS pathophysiology. This review examines what is currently known about the CRPS inflammatory and pain mechanisms, as well as the possible impact of neurostimulation therapies on the neuroimmune axis of CRPS. ⋯ Increasing evidence supports a role for inflammation and neuroinflammation in CRPS pathophysiology. Preliminary neurostimulation findings, together with the role of (neuro)inflammation in CRPS, seems to provide a compelling rationale for its use in CRPS pain treatment. The possible immunomodulatory effects of neurostimulation opens new therapeutic possibilities, however further research is needed to gain a better understanding of the working mechanisms.
-
Pain is a serious clinical challenge, and is associated with a significant reduction in quality of life and high financial costs for affected patients. Research efforts have been made to explore the etiological basis of pain to guide the future treatment of patients suffering from pain conditions. ⋯ In the present review, we summarized major findings in recent studies which examined the roles of KA receptor dysregulation in nociceptive transmission and in pain. This timely overview of current knowledge will help to provide a framework for future developing novel therapeutic strategies to manage pain.