Mol Pain
-
Neuropathic injury is accompanied by chronic inflammation contributing to the onset and maintenance of pain after an initial insult. In addition to their roles in promoting immune cell activation, inflammatory mediators like secretory phospholipase A2 (sPLA2) modulate nociceptive and excitatory neuronal signaling during the initiation of pain through hydrolytic activity. Despite having a known role in glial activation and cytokine release, it is unknown if sPLA2 contributes to the maintenance of painful neuropathy and spinal hyperexcitability later after neural injury. ⋯ Spinal sPLA2 inhibition at day 7 abolishes behavioral sensitivity, reduces both evoked and spontaneous neuronal firing in the spinal cord, and restores the distribution of neuronal phenotypes to those of control conditions. Inhibiting spinal sPLA2 also increases intracellular glutamate concentrations and restores spinal expression of GLAST, GLT1, mGluR5, and GluR1 to uninjured expression with no effect on NR1. These findings establish a role for spinal sPLA2 in maintaining pain and central sensitization after neural injury and suggest this may be via exacerbating glutamate excitotoxicity in the spinal cord.
-
Chronic pain is a debilitating condition affecting millions of people worldwide, and an improved understanding of the pathophysiology of chronic pain is urgently needed. Nociceptors are the sensory neurons that alert the nervous system to potentially harmful stimuli such as mechanical pressure or noxious thermal temperature. When an injury occurs, the nociceptive threshold for pain is reduced and an increased pain signal is produced. ⋯ Knockdown of Brk resulted in hypersensitivity in the absence of injury, indicating that it normally acts to suppress nociceptive sensitivity. Animals in which transcriptional activator Shn was knocked down in nociceptors failed to develop normal allodynia after ultraviolet irradiation injury, indicating that Shn normally acts to promote hypersensitivity after injury. These results indicate that Brk-related transcription regulators play a crucial role in the formation of nociceptive sensitization and may therefore represent valuable new targets for pain-relieving medications.
-
Peripheral inflammatory and neuropathic pain are closely related to the activation of purinergic receptor P2X ligand-gated ion channel 3 (P2X3) and transient receptor potential vanilloid 1 (TRPV1), but the interaction between P2X3 and TRPV1 in different types of pathological pain has rarely been reported. In this study, complete Freund's adjuvant (CFA)-induced inflammatory pain and spared nerve injury (SNI)-induced neuropathic pain models were established in adult rats. The interactions between P2X3 and TRPV1 in the dorsal root ganglion were observed by pharmacological, co-immunoprecipitation, immunofluorescence and whole-cell patch-clamp recording assays. ⋯ TRPV1 and P2X3 had inhibitory effects on each other in the inflammatory pain model. During neuropathic pain, P2X3 facilitated the function of TRPV1, while TRPV1 had an inhibitory effect on P2X3. These results suggest that the mutual effects of P2X3 and TRPV1 differ in cases of inflammatory and neuropathic pain in rats.
-
Emerging evidence suggests mild traumatic brain injury related headache (MTBI-HA) is a form of neuropathic pain state. Previous supraspinal mechanistic studies indicate patients with MTBI-HA demonstrate a dissociative state with diminished levels of supraspinal prefrontal pain modulatory functions and enhanced supraspinal sensory response to pain in comparison to healthy controls. However, the relationship between supraspinal pain modulatory functional deficit and severity of MTBI-HA is largely unknown. ⋯ In the moderate-headache group, a significant (T = -3.05, p < 0.01) decrease in resting state activity was observed in the left superior parietal cortex when compared to the mild-headache group. In the severe-headache group, significant decreases in resting state supraspinal activities in the right insula (T = -3.46, p < 0.001), right premotor cortex (T = -3.30, p < 0.01), left premotor cortex (T = -3.84, p < 0.001), and left parietal cortex (T = -3.94, p < 0.0001), and an increase in activity in the right secondary somatosensory cortex (T = 4.05, p < 0.0001) were observed when compared to the moderate-headache group. The results of the study suggest that the increase in MTBI-HA severity may be associated with an imbalance in the supraspinal pain network with decline in supraspinal pain modulatory function and enhancement of sensory/pain decoding.
-
Adult rats that experienced neonatal limited bedding (NLB), a form of early-life stress, experience persistent muscle mechanical hyperalgesia. Since there is a growing recognition that the gut microbiome regulates pain and nociception, and that early-life stress produces a long-lasting impact on the gut microbiome, we tested the hypothesis that persistent muscle hyperalgesia seen in adult NLB rats could be ameliorated by interventions that modify the gut microbiome. Adult NLB rats received probiotics, either Lactobacillus rhamnosus GG (10 billion CFU/150 ml) or De Simone Formulation (DSF) (112.5 billion CFU/150 ml mixture of 8 bacterial species), in their drinking water, or non-absorbable antibiotics, rifaximin or neomycin, admixed with cookie dough, to provide 50 mg/kg. ⋯ Adult NLB rats fed probiotics L. Rhamnosus or DSF, antibiotics, as well as rats fed non-absorbable antibiotics rifaximin or neomycin, had markedly attenuated muscle mechanical hyperalgesia. We hypothesize that persistent skeletal muscle hyperalgesia produced by NLB stress may be, at least in part, due to a contribution of the gut microbiome, and that modulation of gut microbiome using probiotics or non-absorbable antibiotics, may be novel therapeutic approaches for the treatment of chronic musculoskeletal pain.