Mol Pain
-
Recent advances in pain research provide a clear picture for the molecular mechanisms of acute pain; substantial information concerning plasticity that occurs during neuropathic pain has also become available. The peripheral mechanisms responsible for neuropathic pain are found in the altered gene/protein expression of primary sensory neurons. With damage to peripheral sensory fibers, a variety of changes in pain-related gene expression take place in dorsal root ganglion neurons. ⋯ Because neuropathic pain in peripheral and central demyelinating diseases develops as a result of aberrant myelination in experimental animals, demyelination seems to be a key mechanism of plasticity in neuropathic pain. More recently, we discovered that lysophosphatidic acid receptor activation initiates neuropathic pain, as well as possible peripheral mechanism of demyelination after nerve injury. These results lead to further hypotheses of physical communication between innocuous Abeta- and noxious C- or Adelta-fibers to influence the molecular mechanisms of allodynia.
-
There is evidence to suggest that the midbrain periaqueductal grey (PAG) has a role in migraine and the actions of the anti-migraine drug sumatriptan. In the present study we examined the serotonergic modulation of GABAergic and glutamatergic synaptic transmission in rat midbrain PAG slices in vitro. ⋯ These results indicate that sumatriptan inhibits GABAergic and glutamatergic synaptic transmission within the PAG via a 5-HT1B/D receptor mediated reduction in the probability of neurotransmitter release from nerve terminals. These actions overlap those of other analgesics, such as opioids, and provide a mechanism by which centrally acting 5-HT1B and 5-HT1D ligands might lead to novel anti-migraine pharmacotherapies.
-
Case Reports
Paroxysmal extreme pain disorder M1627K mutation in human Nav1.7 renders DRG neurons hyperexcitable.
Paroxysmal extreme pain disorder (PEPD) is an autosomal dominant painful neuropathy with many, but not all, cases linked to gain-of-function mutations in SCN9A which encodes voltage-gated sodium channel Nav1.7. Severe pain episodes and skin flushing start in infancy and are induced by perianal probing or bowl movement, and pain progresses to ocular and mandibular areas with age. Carbamazepine has been effective in relieving symptoms, while other drugs including other anti-epileptics are less effective. ⋯ M1627K mutation was previously identified in a sporadic case of PEPD from France, and we now report it in an English family. We confirm the initial characterization of mutant M1627K effect on fast-inactivation of Nav1.7 and extend the analysis to other gating properties of the channel. We also show that M1627K mutant channels render DRG neurons hyperexcitable. Our new data provide a link between altered channel biophysics and pain in PEPD patients.
-
We have previously demonstrated that different spinal transmissions are involved in the nociceptive behavior caused by electrical stimulation of Abeta-, Adelta- or C-fibers using a Neurometer in naïve mice. In this study, we attempted to pharmacologically characterize the alteration in spinal transmission induced by partial sciatic nerve injury in terms of nociceptive behavior and phosphorylation of extracellular signal-regulated kinase (pERK) in the spinal dorsal horn. ⋯ These results suggest that Abeta-fiber perception is newly transmitted to spinal neurons, which originally receive only Adelta- and C-fiber-mediated pain transmission, through NMDA receptor-mediated mechanisms, in animals with nerve injury. This pharmacological switch in Abeta-fiber spinal transmission could be a mechanism underlying neuropathic allodynia.
-
Pain is often a dominant clinical feature of chronic pancreatitis but the frequency and severity is highly variable between subjects. We hypothesized that genetic polymorphisms contribute to variations in clinical pain patterns. Since genetic variations in the GTP cyclohydrolase (GCH1) gene have been reported to protect some patients from pain, we investigated the effect of the "pain protective haplotype" in well characterized patients with chronic pancreatitis (CP) or recurrent acute pancreatitis (RAP) from the North American Pancreatitis Study 2 (NAPS2). ⋯ The GCH1 pain-protective haplotype does not have a significant effect on pain patterns or severity in RAP or CP. These results are important for helping to define the regulators of visceral pain, and to distinguish different mechanisms of pain.