Int J Med Sci
-
Diabetes mellitus (DM) causes impaired wound healing by affecting one or more of the biological mechanisms of hemostasis, inflammation, proliferation, and remodeling and a large number of cell types, extracellular components, growth factors, and cytokines. Interventions targeted toward these mechanisms might accelerate the wound healing process. To evaluate the wound healing efficacy of supercritical carbon dioxide (scCO2)-decellularized porcine acellular dermal matrix (ADM) combined with autologous adipose-derived stem cells (ASCs) in streptozotocin (STZ)-induced DM rats. ⋯ ADM-ASC-treated rats showed significantly increased epidermal growth factor, Ki67, and prolyl 4-hydroxylase and significantly decreased CD45 compared with the group with the DM wound without treatment. The intervention comprising ADM decellularized from porcine skin by using scCO2 and ASCs was proven to improve diabetic wound healing. ADM-ASCs had a positive effect on epidermal regeneration, anti-inflammation, collagen production and processing, and cell proliferation; thus, it accelerated wound healing.
-
Background: Corona Virus Disease 2019 (COVID-19) has become a global pandemic. This study established prognostic scoring models based on comorbidities and other clinical information for severe and critical patients with COVID-19. Material and Methods: We retrospectively collected data from 51 patients diagnosed as severe or critical COVID-19 who were admitted between January 29, 2020, and February 18, 2020. ⋯ There were significant trends for increasing hospital LOS with increasing CCI, ASCCI, and ASECI scores (OR 57.500, P = 0.001, 95%CI 5.687-581.399; OR 71.500, P = 0.001, 95%CI 5.689-898.642; and OR 19.556, P = 0.001, 95%CI 3.315-115.372, respectively). The result was similar for the outcome of critical illness (OR 21.333, P = 0.001, 95%CI 3.565-127.672; OR 13.000, P = 0.009, 95%CI 1.921-87.990; OR 11.333, P = 0.008, 95%CI 1.859-69.080, respectively). Conclusions: This study established prognostic scoring models based on comorbidities and clinical information, which may help with the graded management of patients according to prognosis score and remind physicians to pay more attention to patients with high scores.
-
Observational Study
Vitamin D Status and Pregnancy Complications: Serum 1,25-di-hydroxyl-Vitamin D and its Ratio to 25-hydroxy-Vitamin D are Superior Biomarkers than 25-hydroxy-Vitamin D.
Vitamin D (VitD) deficiency during pregnancy has been associated with adverse neonatal outcomes and increased risk of late pregnancy complications. We planned to correlate serum VitD biomarkers; 25-hydroxyvitamin D (25-OH-VitD) and 1,25-dihydroxyvitamin D (1,25-diOH-VitD) levels; and their ratio with the frequency of feto-maternal pregnancy complications. A prospective cross-sectional case-control study was conducted at Aljouf Maternity and Children Hospital, Sakaka, Saudi Arabia, during the period of September 1, 2017 to September 30, 2019. 322 pregnant women were stratified into 2 groups: controls (110 cases) and complicated group (212 cases). ⋯ ROC analysis showed very high sensitivity and specificity, to differentiate patients from controls, only for 1,25-diOH-VitD (AUC = 0.965; 0.947 - 0.983, p <0.001) followed by the ratio but not 25-OH-VitD. In conclusions, 25-OH-VitD did not show significant changes except for GDM. 1,25-diOH-VitD levels and the ratio showed strong associations with pregnancy complications. Serum 1,25-di-OH-VitD and its ratio to 25-OH-VitD are more reliable and physiologically relevant biomarkers for VitD status in pregnancy.
-
MicroRNA-19 (miR-19) is identified as the key oncogenic component of the miR-17-92 cluster. When we explored the functions of the dysregulated miR-19 in lung cancer, microarray-based data unexpectedly demonstrated that some immune and inflammatory response genes (i.e., IL32, IFI6 and IFIT1) were generally down-regulated by miR-19 overexpression in A549 cells, which prompted us to fully investigate whether the miR-19 family (i.e., miR-19a and miR-19b-1) was implicated in regulating the expression of immune and inflammatory response genes in cancer cells. In the present study, we observed that miR-19a or miR-19b-1 overexpression by miRNA mimics in the A549, HCC827 and CNE2 cells significantly downregulated the expression of interferon (IFN)-regulated genes (i.e., IRF7, IFI6, IFIT1, IFITM1, IFI27 and IFI44L). ⋯ The ectopic expression of miR-19a or miR-19b-1 downregulated IL32 expression in the A549 and HCC827 cells and upregulated IL32 expression in CNE2 and HONE1 cells. In addition, enforced miR-19a or miR-19b-1 expression suppressed IL-6 production by lung cancer and nasopharyngeal carcinoma (NPC) cells. Taken together, these findings demonstrate, for the first time, that miR-19 can modulate the expression of IFN-induced genes and MHC class I genes in human cancer cells, suggesting a novel role of miR-19 in linking inflammation and cancer, which remains to be fully characterized.
-
Trisomy 21, also known as Down Syndrome (DS), is the most common chromosome abnormality and causes intellectual disability. Long non-coding RNA (lncRNA) growth arrest-specific 5 (GAS5), whose differential expression has recently been reported in patients with Klinefelter syndrome, has been addressed to play a role in the development of inflammatory and autoimmune diseases, vascular endothelial cells apoptosis and atherosclerosis, all being common features in patients with DS. ⋯ A significant lncRNA GAS5 down-regulation was observed in patients with DS by RT-PCR analysis, The RNA sequencing experiments confirmed the qRT-PCR data. LncRNA GAS5 down-expression may play a role in the development of some typical features of the patients with DS and, particularly, in inflammatory and autoimmune diseases.