Respiratory care
-
Visualization of the larynx by direct or indirect means is referred to as laryngoscopy and is the principal aim during airway management for passage of a tracheal tube. This paper presents a brief background regarding the development and practice of laryngoscopy and examines the equipment and techniques for both direct and indirect methods. Patient evaluation during the airway examination is discussed, as are predictors for difficult intubation. Laryngoscope blade design, newer intubating techniques, and a variety of indirect laryngoscopic technologies are reviewed, as is the learning curve for these techniques and devices.
-
Tracheostomy tubes are used to administer positive-pressure ventilation, to provide a patent airway, and to provide access to the lower respiratory tract for airway clearance. They are available in a variety of sizes and styles from several manufacturers. The dimensions of tracheostomy tubes are given by their inner diameter, outer diameter, length, and curvature. ⋯ Specialized teams may be useful in managing patients with a tracheostomy. Speech can be facilitated with a speaking valve in patients with a tracheostomy tube who are breathing spontaneously. In mechanically ventilated patients with a tracheostomy, a talking tracheostomy tube, a deflated cuff technique with a speaking valve, or a deflated cuff technique without a speaking valve can be used to facilitate speech.
-
Manual ventilation is a basic skill that involves airway assessment, maneuvers to open the airway, and application of simple and complex airway support devices and effective positive-pressure ventilation using a bag and mask. An important part of manual ventilation is recognizing its success and when it is difficult or impossible and a higher level of support is necessary to sustain life. Careful airway assessment will help clinicians identify what and when the next step needs to be taken. ⋯ Bag-mask ventilation (BMV) plays a vital role in effective manual ventilation, improving both oxygenation and ventilation as well as buying time while preparations are made for endotracheal intubation. There are, however, situations in which BMV may be difficult or impossible. Anticipation and early recognition of these situations allows clinicians to quickly make adjustments to the method of BMV or to employ a more advanced intervention to avoid delays in establishing adequate oxygenation and ventilation.
-
Tracheostomy is a common procedure performed in critically ill patients requiring prolonged mechanical ventilation for acute respiratory failure and for airway issues. The ideal timing (early vs late) and techniques (percutaneous dilatational, other new percutaneous techniques, open surgical) for tracheostomy have been topics of considerable debate. In this review, we address general issues regarding tracheostomy (epidemiology, indications, and outcomes) and specifically review the literature regarding appropriate timing of tracheostomy tube placement. ⋯ Two new percutaneous techniques, a balloon inflation technique (Dolphin) and the PercuTwist procedure, are reviewed. The efficacy of tracheostomy teams and tracheostomy hospital services with standardized protocols for tracheostomy insertion and care has been associated with improved outcomes. Finally, the UK National Tracheostomy Safety Project developed standardized resources for education of both health care providers and patients, including emergency algorithms for tracheostomy incidents, and serves as an excellent educational resource in this important area.
-
Supraglottic airway devices (SADs) are used to keep the upper airway open to provide unobstructed ventilation. Early (first-generation) SADs rapidly replaced endotracheal intubation and face masks in > 40% of general anesthesia cases due to their versatility and ease of use. Second-generation devices have further improved efficacy and utility by incorporating design changes. ⋯ SADs now provide successful rescue ventilation in > 90% of patients in whom mask ventilation or tracheal intubation is found to be impossible. However, some concerns with these devices remain, including failing to adequately ventilate, causing airway damage, and increasing the likelihood of pulmonary aspiration of gastric contents. Careful patient selection and excellent technical skills are necessary for successful use of these devices.