Respiratory care
-
Although the fundamentals of extracorporeal membrane oxygenation (ECMO) have not changed in 3 decades, the technical elements continue to improve and have evolved from an assemblage of individual components to more integrated systems with added features, enhanced safety, and improved maneuverability. The introduction of polymethylpentene (PMP) fiber technology has expanded the development of artificial membranes that have low resistance, are more biocompatible, and can be used for extended durations. Extracorporeal carbon dioxide removal techniques continue to be enhanced as stand alone technology and modified renal dialysis systems are introduced. ⋯ The use of high-fidelity simulation training has become a standard and important method for reinforcing technical skills, refining troubleshooting sequences, and enhancing team interactions. Modifications to mannequins and ECMO systems coupled with clinical and physiologic scenarios will help achieve greater realism and enhance learning. ECMO technology continues to improve, with adaptability and versatility being essential attributes.
-
Extracorporeal lung support can be achieved using extracorporeal membrane oxygenation (ECMO) and extracorporeal CO2 removal. The ECMO systems allow a total lung support, providing both blood oxygenation and CO2 removal. Unlike ECMO, extracorporeal CO2 removal refers to an extracorporeal circuit that provides a partial lung support and selectively extracts CO2 from blood. ⋯ This is possible thanks to the continuous development of technology together with the customization of sedative protocols. Awake extracorporeal support is a specific approach in which the patient is awake and potentially cooperative while receiving ECMO. The present analysis aims to synthesize the main results obtained by using extracorporeal circuits in patients with respiratory failure, particularly in those patients with hypercapnia.