Physics in medicine and biology
-
Respiratory induced resonance offset (RIRO) is a periodic disturbance of a magnetic field due to breathing. Such disturbance handicaps the accuracy of the proton resonance frequency shift (PRFS) method of MRI temperature mapping in anatomies situated nearby the lungs and chest wall. In this work, we propose a method capable of minimizing errors caused by RIRO in PRFS temperature maps. ⋯ Then, the calculated temperature changes are corrected for the additional contribution caused by RIRO using the pre-treatment baseline images acquired at the identical instances of the respiratory cycle. Our method is shown to improve the accuracy and stability of PRFS temperature maps in the presence of RIRO and inter-scan motion in phantom and volunteers' breathing experiments. Our method is also shown to be applicable to anatomies moving during breathing if a proper registration procedure is applied.
-
Comparative Study
Deformable registration of the planning image (kVCT) and the daily images (MVCT) for adaptive radiation therapy.
The incorporation of daily images into the radiotherapy process leads to adaptive radiation therapy (ART), in which the treatment is evaluated periodically and the plan is adaptively modified for the remaining course of radiotherapy. Deformable registration between the planning image and the daily images is a key component of ART. In this paper, we report our researches on deformable registration between the planning kVCT and the daily MVCT image sets. ⋯ We registered the MVCT images with their corresponding kVCT image. The similarity measures and visual inspections of contour matches by physicians validated this technique. The applications of deformable registration in ART, including 'deformable dose accumulation', 'automatic re-contouring' and 'tumour growth/regression evaluation' throughout the course of radiotherapy are also studied.