Physics in medicine and biology
-
A method of four-dimensional (4D) magnetic resonance imaging (MRI) has been implemented and evaluated. It consists of retrospective sorting and slice stacking of two-dimensional (2D) images using an external signal for motion monitoring of the object to be imaged. The presented method aims to determine the tumour trajectories based on a signal that is appropriate for monitoring the movement of the target volume during radiotherapy such that the radiation delivery can be adapted to the movement. ⋯ Anatomic changes of the lung phantom caused by respiratory motion have been quantified, revealing hysteresis. The results demonstrate the feasibility of the presented method of 4D-MRI. In particular, it enables the determination of trajectories of periodically moving objects with an uncertainty in the order of 1 mm.
-
Comparative Study
Comparative evaluation of similarity measures for the rigid registration of multi-modal head images.
Image registrations that are based on similarity measures simply adjust the parameters of an appropriate spatial transformation model until the similarity measure reaches an optimum. The numerous similarity measures that have been proposed in the past are differently sensitive to imaging modality, image content and differences in the image content, selection of the floating and target image, partial image overlap, etc. ⋯ The results for the PET/MR registration and for the registration of CT to both rectified and unrectified MR images indicate that mutual information, normalized mutual information and the entropy correlation coefficient are the most accurate similarity measures and have the smallest risk of being trapped in a local optimum. The results of an experiment on the impact of exchanging the floating and target image indicate that, especially in MR/PET registrations, the behavior of some similarity measures, such as mutual information, significantly depends on which image is the floating and which is the target.
-
This study uses numerical solutions of a bio-heat transfer equation to investigate the relationship between skin surface temperature distributions and internal heat sources under various physiological and environmental conditions. It is found that although a surface temperature distribution depends on all heat source parameters, the properly normalized distribution is primarily affected only by the depth of the heat source. This study provides a physical basis for determining the depth and type of an internal heat source from a thermogram acquired in various environmental conditions and an understanding of the basic relationship between skin surface temperature distributions and internal heat sources.
-
Respiratory motion in emission tomography leads to reduced image quality. Developed correction methodology has been concentrating on the use of respiratory synchronized acquisitions leading to gated frames. Such frames, however, are of low signal-to-noise ratio as a result of containing reduced statistics. ⋯ Two different implementations for the incorporation of the elastic transformations within the one-pass list mode EM (OPL-EM) algorithm were developed and evaluated. The corrected images were compared with those produced using an affine transformation of list mode data prior to reconstruction, as well as with uncorrected respiratory motion average images. Results demonstrate that although both correction techniques considered lead to significant improvements in accounting for respiratory motion artefacts in the lung fields, the elastic-transformation-based correction leads to a more uniform improvement across the lungs for different lesion sizes and locations.
-
The high frequency of the radiofrequency (RF) fields used in high field magnetic resonance imaging (MRI) results in electromagnetic field variations that can cause local regions to have a large specific absorption rate (SAR) and/or a low excitation. In this study, we evaluated the use of a B1 shimming technique which can simultaneously improve the B+1 homogeneity and reduce the SAR for whole body imaging at 7 T. Optimizations for four individual anatomies showed a reduction up to 74% of the peak SAR values with respect to a quadrature excitation and a simultaneous improvement of the B+1 homogeneity varying between 39 and 75% for different optimization parameters. ⋯ The optimized phase and amplitude settings from an elliptical phantom model were applied to four realistic human anatomy models to evaluate whether a generic application without prior knowledge of the detailed human anatomy is possible. This resulted in an average improvement of the B+1 homogeneity of 37% and an average reduction of the maximum and average SAR of 50 and 55%, respectively. It can be concluded that this generic method can be used as a simple method to improve the prospects of 7 T body imaging.