Experimental hematology
-
Experimental hematology · Dec 2020
ReviewEvolving insights on histone methylome regulation in human acute myeloid leukemia pathogenesis and targeted therapy.
Acute myeloid leukemia (AML) is an aggressive, disseminated hematological malignancy associated with clonal selection of aberrant self-renewing hematopoietic stem cells and progenitors and poorly differentiated myeloid blasts. The most prevalent form of leukemia in adults, AML is predominantly an age-related disorder and accounts for more than 10,000 deaths per year in the United States alone. In comparison to solid tumors, AML has an overall low mutational burden, albeit more than 70% of AML patients harbor somatic mutations in genes encoding epigenetic modifiers and chromatin regulators. ⋯ AML-associated HMTs and HDMs, through intricate crosstalk mechanisms, maintain an altered histone methylation code conducive to disease progression. We further discuss their importance in governing response to therapy, which can be used as a biomarker for treatment efficacy. Finally we deliberate on the therapeutic potential of targeting aberrant histone methylome in AML, examine available small molecule inhibitors in combination with immunomodulating therapeutic approaches and caveats, and discuss how future studies can enable posited epigenome-based targeted therapy to become a mainstay for AML treatment.
-
Experimental hematology · Aug 2018
ReviewHemoglobin disorders: lentiviral gene therapy in the starting blocks to enter clinical practice.
The β-hemoglobinopathies, transfusion-dependent β-thalassemia and sickle cell disease, are the most prevalent inherited disorders worldwide and affect millions of people. Many of these patients have a shortened life expectancy and suffer from severe morbidity despite supportive therapies, which impose an enormous financial burden to societies. The only available curative therapy is allogeneic hematopoietic stem cell transplantation, although most patients do not have an HLA-matched sibling donor, and those who do still risk life-threatening complications. ⋯ Proof-of-principle of therapeutic efficacy in the first patient with sickle cell disease was also reported with LentiGlobin BB305. Encouraging results were presented in children with transfusion-dependent β-thalassemia in another trial with the GLOBE lentiviral vector and several other gene therapy trials are currently open for both transfusion-dependent β-thalassemia and sickle cell disease. Phase III trials are now under way and should help to determine benefit/risk/cost ratios to move gene therapy toward clinical practice.
-
Experimental hematology · Jul 2018
ReviewHarnessing the potential of epigenetic therapies for childhood acute myeloid leukemia.
There is a desperate need for new and effective therapeutic approaches to acute myeloid leukemia (AML) in both children and adults. Epigenetic aberrations are common in adult AML, and many novel epigenetic compounds that may improve patient outcomes are in clinical development. Mutations in epigenetic regulators occur less frequently in AML in children than in adults. Investigating the potential benefits of epigenetic therapy in pediatric AML is an important issue and is discussed in this review.
-
Multiple myeloma (MM) is a plasma-cell malignancy which remains incurable despite the recent emergence of multiple novel agents. Importantly, recent genetic and molecular analyses have revealed the complexity and heterogeneity of this disease, highlighting the need for therapeutic strategies to eliminate all clones. ⋯ New classes of agents including proteasome inhibitors, immunomodulatory drugs, monoclonal antibodies, and histone deacetylase inhibitors have shown remarkable efficacy; however, novel therapeutic approaches are still urgently needed to further improve patient outcomes. In this review, we discuss the recent advances and future strategies to ultimately develop MM therapies with curative potential.
-
Experimental hematology · Jun 2008
ReviewImmunosuppression by mesenchymal stromal cells: from culture to clinic.
Extensive in vitro studies have shown that multipotent mesenchymal stromal cells (MSC) can exert profound immunosuppressive effects via modulation of both cellular and innate immune pathways. Their ability to be readily isolated from a number of tissues and expanded ex vivo makes them attractive candidates for systemic immunosuppressive therapy. ⋯ While in vitro data consistently demonstrate the immunosuppressive capability of MSC, current studies in animals and humans suggest that MSC are less effective in producing systemic immunosuppression. Further mechanistic studies and randomized controlled trials using standardized cell populations are needed to define the optimal conditions for the use of MSC as immunotherapy.