Frontiers in neurology
-
Frontiers in neurology · Jan 2013
ReviewRole of intravenous levetiracetam in seizure prophylaxis of severe traumatic brain injury patients.
Traumatic brain injury (TBI) can cause seizures and the development of epilepsy. The incidence of seizures varies from 21% in patients with severe brain injuries to 50% in patients with war-related penetrating TBI. In the acute and sub-acute periods following injury, seizures can lead to increased intracranial pressure and cerebral edema, further complicating TBI management. ⋯ Phenytoin is the most widely prescribed anticonvulsant in these patients. Intravenous levetiracetam, made available in 2006, is now being considered as a viable option in acute care settings if phenytoin is unavailable or not feasible due to side-effects. We discuss current data regarding the role of intravenous levetiracetam in seizure prophylaxis of severe TBI patients and the need for future studies.
-
Frontiers in neurology · Jan 2013
Clostridium difficile Associated Disease in a Neurointensive Care Unit.
Critically ill patients are at high risk for acquiring Clostridium difficile infection. The aim of this study was to investigate the prevalence, severity, and outcome of neurointensive care unit (NICU) acquired Clostridium difficile associated disease (CDAD). ⋯ The prevalence rate (0.4%) and morbidity of CDAD in the unit are low. A larger database is needed to better analyze the associated risk factors in this subgroup of patients. A possible increase in disease burden due to a delay in discharge from the ICU merits further evaluation.
-
Frontiers in neurology · Jan 2013
Amyloid-β Peptides and Tau Protein as Biomarkers in Cerebrospinal and Interstitial Fluid Following Traumatic Brain Injury: A Review of Experimental and Clinical Studies.
Traumatic brain injury (TBI) survivors frequently suffer from life-long deficits in cognitive functions and a reduced quality of life. Axonal injury, observed in many severe TBI patients, results in accumulation of amyloid precursor protein (APP). Post-injury enzymatic cleavage of APP can generate amyloid-β (Aβ) peptides, a hallmark finding in Alzheimer's disease (AD). ⋯ The heterogeneity of animal models, clinical cohorts, analytical techniques, and the complexity of TBI in the available studies make the clinical value of tau and Aβ as biomarkers uncertain at present. Additionally, the link between early post-injury changes in tau and Aβ peptides and the future risk of developing AD remains unclear. Future studies using methods such as rapid biomarker sampling combined with enhanced analytical techniques and/or novel pharmacological tools could provide additional information on the importance of Aβ peptides and tau protein in both the acute pathophysiology and long-term consequences of TBI.
-
Frontiers in neurology · Jan 2013
Consequences of the dynamic triple peak impact factor in Traumatic Brain Injury as Measured with Numerical Simulation.
There is a lack of knowledge about the direct neuromechanical consequences in traumatic brain injury (TBI) at the scene of accident. In this study we use a finite element model of the human head to study the dynamic response of the brain during the first milliseconds after the impact with velocities of 10, 6, and 2 meters/second (m/s), respectively. The numerical simulation was focused on the external kinetic energy transfer, intracranial pressure (ICP), strain energy density and first principal strain level, and their respective impacts to the brain tissue. ⋯ The dynamic triple peak impacts occurred in a sequential manner first showing strain energy density and ICP and then followed by first principal strain. This should open up a new dimension to better understand the complex mechanisms underlying TBI. Thus, it is suggested that the combination of the dynamic triple peak impacts to the brain tissue may interfere with the cerebral metabolism relative to the impact severity thereby having the potential to differentiate between severe and moderate TBI from mild TBI.