Frontiers in neurology
-
Frontiers in neurology · Jan 2020
Cerebral Near Infrared Spectroscopy Monitoring in Term Infants With Hypoxic Ischemic Encephalopathy-A Systematic Review.
Background: Neonatal hypoxic ischemic encephalopathy (HIE) remains a significant cause of mortality and morbidity worldwide. Cerebral near infrared spectroscopy (NIRS) can provide cot side continuous information about changes in brain hemodynamics, oxygenation and metabolism in real time. Objective: To perform a systematic review of cerebral NIRS monitoring in term and near-term infants with HIE. ⋯ Conclusion: Commercial NIRS cerebral oximeters can provide important information regarding changes in cerebral oxygenation and hemodynamics following HIE and can be particularly helpful when used in combination with other neuromonitoring tools. Optical measurements of brain metabolism using broadband NIRS and cerebral blood flow using diffuse correlation spectroscopy add additional pathophysiological information. Further randomized clinical trials and large observational studies are necessary with proper study design to assess the utility of NIRS in predicting neurodevelopmental outcome and guiding therapeutic interventions.
-
Frontiers in neurology · Jan 2020
ReviewNeurological Manifestations of COVID-19 (SARS-CoV-2): A Review.
Background: Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been associated with many neurological symptoms but there is a little evidence-based published material on the neurological manifestations of COVID-19. The purpose of this article is to review the spectrum of the various neurological manifestations and underlying associated pathophysiology in COVID-19 patients. Method: We conducted a review of the various case reports and retrospective clinical studies published on the neurological manifestations, associated literature, and related pathophysiology of COVID-19 using PUBMED and subsequent proceedings. ⋯ There is a need to diagnose these manifestations at the earliest to limit long term sequelae. Much research is needed to explore the role of SARS-CoV-2 in causing these neurological manifestations by isolating it either from cerebrospinal fluid or brain tissues of the deceased on autopsy. We also recommend exploring the risk factors that lead to the development of these neurological manifestations.
-
SARS-CoV-2 is a highly pathogenic coronavirus that has caused an ongoing worldwide pandemic. Emerging in Wuhan, China in December 2019, the virus has spread rapidly around the world. Corona virus disease 2019 (COVID-19), which is caused by SARS-CoV-2, has resulted in significant morbidity and mortality. ⋯ This includes headache, anosmia, meningoencephalitis, acute ischemic stroke, and several presumably post/para-infectious syndromes and altered mental status not explained by respiratory etiologies. Interestingly, previous studies in animal models emphasized the neurotropism of coronaviruses; thus, these CNS manifestations of COVID-19 are not surprising. This minireview scans the literature regarding the involvement of the CNS in coronavirus infections in general, and in regard to the recent SARS-CoV-2, specifically.
-
Frontiers in neurology · Jan 2020
ReviewMachine Learning Applications in the Neuro ICU: A Solution to Big Data Mayhem?
The neurological ICU (neuro ICU) often suffers from significant limitations due to scarce resource availability for their neurocritical care patients. Neuro ICU patients require frequent neurological evaluations, continuous monitoring of various physiological parameters, frequent imaging, and routine lab testing. This amasses large amounts of data specific to each patient. ⋯ Machine Learning algorithms (ML), are uniquely capable of interpreting high-dimensional datasets that are too difficult for humans to comprehend. Therefore, the application of ML in the neuro ICU could alleviate the burden of analyzing big datasets for each patient. This review serves to (1) briefly summarize ML and compare the different types of MLs, (2) review recent ML applications to improve neuro ICU management and (3) describe the future implications of ML to neuro ICU management.
-
Frontiers in neurology · Jan 2020
ReviewAdvances and Future Directions of Diagnosis and Management of Pediatric Abusive Head Trauma: A Review of the Literature.
Abusive head trauma (AHT) is broadly defined as injury of the skull and intracranial contents as a result of perpetrator-inflicted force and represents a persistent and significant disease burden in children under the age of 4 years. When compared to age-matched controls with typically single occurrence accidental traumatic brain injury (TBI), mortality after AHT is disproportionately high and likely attributable to key differences between injury phenotypes. This article aims to review the epidemiology of AHT, summarize the current state of AHT diagnosis, treatment, and prevention as well as areas for future directions of study. ⋯ More research, including AHT inclusion in childhood TBI studies with comparisons to age-matched controls, and translational models with clinical fidelity are needed to better elucidate the pathophysiology of AHT and inform both clinical care and the development of targeted therapies. Clinical prediction rules, biomarkers, and imaging modalities hold promise, though these have largely been developed and validated in patients after clinically evident AHT has already occurred. Nevertheless, recognition of warning signs and intervention before irreversible harm occurs remains the current best strategy for medical professionals to protect vulnerable infants and toddlers.