Frontiers in physiology
-
Frontiers in physiology · Jan 2020
Development and Clinical Application of a Novel Non-contact Early Airflow Limitation Screening System Using an Infrared Time-of-Flight Depth Image Sensor.
Obstructive pulmonary diseases, such as diffuse panbronchiolitis (DPB), asthma, chronic obstructive pulmonary disease (COPD), and asthma COPD overlap syndrome (ACOS) trigger a severe reaction at some situations. Detecting early airflow limitation caused by diseases above is critical to stop the progression. Thus, there is a need for tools to enable self-screening of early airflow limitation at home. ⋯ Leave-one-out cross-validation analysis revealed that this system provided 81% sensitivity and 90% specificity. Further, the FEV1 EAFL -SS values were closely correlated with that measured using a spirometer (r = 0.85, p < 0.0001). Hence, EAFL-SS appears promising for early airflow limitation screening at home.
-
Frontiers in physiology · Jan 2020
Supervised Machine Learning Applied to Automate Flash and Prolonged Capillary Refill Detection by Pulse Oximetry.
Develop an automated approach to detect flash (<1.0 s) or prolonged (>2.0 s) capillary refill time (CRT) that correlates with clinician judgment by applying several supervised machine learning (ML) techniques to pulse oximeter plethysmography data. ⋯ Supervised machine learning applied to pulse oximeter waveform features predicts flash or prolonged capillary refill.
-
Sarcopenic obesity has been observed in people with neuromuscular impairment, and is linked to adverse health outcomes. It is unclear, however, if sarcopenic obesity develops in adults with facioscapulohumeral muscular dystrophy (FSHD). ⋯ Findings from this study suggest that people with FSHD, although similar in BMI and total body mass compared with controls, commonly meet the definition of sarcopenic obesity. Adults with co-existing FSHD and sarcopenic obesity may be at risk for significant impairments in quality of life, and encounter additional challenges in the management of FSHD manifestations.
-
Frontiers in physiology · Jan 2020
Comparative Effectiveness of High-Intensity Interval Training and Moderate-Intensity Continuous Training for Cardiometabolic Risk Factors and Cardiorespiratory Fitness in Childhood Obesity: A Meta-Analysis of Randomized Controlled Trials.
Purpose: The main objective of this meta-analysis was to compare the effectiveness of high-intensity interval training (HIIT) and of moderate-intensity continuous training (MICT) on cardiometabolic health in childhood obesity and determine whether HIIT is a superior form of training in managing obese children's metabolic health. Methods: Relevant studies published in PubMed, Web of Science, Embase, the Cochrane Library, EBSCO, and CNKI were searched, restricted to those published from inception to 1 October 2019. Only randomized controlled trials (RCTs) depicting the effect of HIIT on childhood obesity were included. ⋯ Moreover, HIIT can improve cardiorespiratory fitness more significantly than MICT. These findings indicate that HIIT may be an alternative and effective training method for managing childhood obesity. PROSPERO Registration Number: CRD42018111308.
-
Frontiers in physiology · Jan 2020
Exercising Caution Upon Waking-Can Exercise Reduce Sleep Inertia?
Sleep inertia, the transitional state of reduced alertness and impaired cognitive performance upon waking, is a safety risk for on-call personnel who can be required to perform critical tasks soon after waking. Sleep inertia countermeasures have previously been investigated; however, none have successfully dissipated sleep inertia within the first 15 min following waking. During this time, on-call personnel could already be driving, providing advice, or performing other safety-critical tasks. ⋯ Here, we examine these physiological processes and hypothesize how exercise can stimulate them, positioning exercise as an effective sleep inertia countermeasure. We then propose key considerations for research investigating the efficacy of exercise as a sleep inertia countermeasure, including the need to determine the intensity and duration of exercise required to reduce sleep inertia, as well as testing the effectiveness of exercise across a range of conditions in which the severity of sleep inertia may vary. Finally, practical considerations are identified, including the recommendation that qualitative field-based research be conducted with on-call personnel to determine the potential constraints in utilizing exercise as a sleep inertia countermeasure in real-world scenarios.