Molecular brain
-
Postsynaptic density (PSD)-95-like membrane-associated guanylate kinases (PSD-MAGUKs) are scaffold proteins in PSDs that cluster signaling molecules near NMDA receptors. PSD-MAGUKs share a common domain structure, including three PDZ (PDZ1/2/3) domains in their N-terminus. While multiple domains enable the PSD-MAGUKs to bind various ligands, the contribution of each PDZ domain to synaptic organization and function is not fully understood. Here, we focused on the PDZ1/2 domains of PSD-95 that bind NMDA-type receptors, and studied the specific roles of the ligand binding of these domains in the assembly of PSD proteins, synaptic properties of hippocampal neurons, and behavior, using ligand binding-deficient PSD-95 cDNA knockin (KI) mice. ⋯ These findings reveal that PSD-95 including its ligand binding of the PDZ1/2 domains controls the synaptic clustering of PSD-MAGUKs and AMPA receptors, which may have an essential role in regulating hippocampal synaptic transmission, plasticity, and hippocampus-dependent behavior.
-
The medial prefrontal cortex (mPFC) serves major executive functions. mPFC output to subcortical brain areas such as the amygdala controls emotional processing and plays an important role in fear extinction. Impaired mPFC function correlates with extinction deficits in anxiety disorders such as PTSD and with cognitive decision-making deficits in neuropsychiatric disorders and persistent pain. Controlling mPFC output is a desirable therapeutic goal in neuropsychiatric disorders but functional differences of cell types (pyramidal cells and interneurons) and regions (infralimbic and prelimbic) represent a challenge. This electrophysiological study used optogenetics for the cell- and region-specific modulation of mPFC pyramidal output in the intact anesthetized animal. ⋯ The novelty of our study is the analysis of optogenetic effects on background and evoked activity of defined cell types in different mPFC regions. The electrophysiological in vivo results directly demonstrate the optogenetic modulation of mPFC activity in a region- and cell type-specific manner, which is significant in conditions of impaired mPFC output.
-
It has been reported that remarkable and sustained activation of astrocytes and/or microglia occurs in cancer induced pain (CIP), which is different from neuropathic and inflammatory pain. The present study was designed to investigate the role of spinal Toll-like receptor 4 (TLR4) induced glial neuroinflammation in cancer induced pain using a modified rat model of bone cancer. The rat model of CIP consisted of unilateral intra-tibial injection with Walker 256 mammary gland carcinoma. ⋯ Naloxone (a nonstereoselective TLR4 signaling blocker, 60 μg, i.t.) also significantly alleviated mechanical allodynia and simultaneously blocked the increased inflammatory cytokine mRNA. The results suggested that spinal TLR4 might play an important role in the sustained glial activation that critically contributed to the robust and sustained spinal neuroinflammation in CIP. This result could potentially help clinicians and researchers to better understand the mechanism of complicated cancer pain.
-
The Notch signaling pathway has been shown to be involved in the development of the nervous system. Recent studies showed that Notch receptors and ligands are also expressed in the nervous system of adult animals. However, whether the Notch signaling pathway has a function in adults is not fully understood. The present study is designed to investigate the function of the Notch signaling pathway in nociceptive transmission, especially during neuropathic pain in adult rats. ⋯ These results suggest that the Notch signaling pathway participates in the induction and maintenance of neuropathic pain, which indicates that the Notch pathway maybe a potential drug target for neuropathic pain treatment.
-
Spinal glia, particularly microglia and astrocytes, are of the utmost importance in the development and maintenance of chronic pain. A recent study from our laboratory revealed that gabapentin, a recommended first-line treatment for multiple neuropathic conditions, could also efficiently antagonize thermal hyperalgesia evoked by complete Freund's adjuvant (CFA)-induced monoarthritis (MA). In the present study, we investigated whether the spinal glia are involved in the anti-hyperalgesic effect of gabapentin and how this event occurs. ⋯ Here we provide the first evidence that gabapentin diminishes CX3CL1 signaling and spinal microglia activation induced by joint inflammation. We also show that the VGCC α2/δ-1 subunits might be involved in these events.