Journal of visualized experiments : JoVE
-
During pre-synaptic embryonic development, neuronal processes traverse short distances to reach their targets via growth cone. Over time, neuronal somata are separated from their axon terminals due to skeletal growth of the enlarging organism (Weiss 1941; Gray, Hukkanen et al. 1992). This mechanotransduction induces a secondary mode of neuronal growth capable of accommodating continual elongation of the axon (Bray 1984; Heidemann and Buxbaum 1994; Heidemann, Lamoureux et al. 1995; Pfister, Iwata et al. 2004). ⋯ Previous work has shown that ASG of embryonic rat dorsal root ganglia neurons are capable of unprecedented growth rates up to 10mm/day, reaching lengths of up to 10 cm; while concurrently resulting in increased axonal diameters (Smith, Wolf et al. 2001; Pfister, Iwata et al. 2004; Pfister, Bonislawski et al. 2006; Pfister, Iwata et al. 2006; Smith 2009). This is in dramatic contrast to regenerative growth cone extension (in absence of mechanical stimuli) where growth rates average 1mm/day with successful regeneration limited to lengths of less than 3 cm (Fu and Gordon 1997; Pfister, Gordon et al. 2011). Accordingly, further study of ASG may help to reveal dysregulated growth mechanisms that limit regeneration in the absence of mechanical stimuli.
-
Spinal cord injury (SCI) is often accompanied by osteoporosis in the sublesional regions of the pelvis and lower extremities, leading to a higher frequency of fractures. As these fractures often occur in regions that have lost normal sensory function, the patient is at a greater risk of fracture-dependent pathologies, including death. SCI-dependent loss in both bone mineral density (BMD, grams/cm2) and bone mineral content (BMC, grams) has been attributed to mechanical disuse, aberrant neuronal signaling and hormonal changes. ⋯ We detect a 12% loss of BMC in the femurs of mice at 40 days post-SCI using the IVIS Lumina XR. This compares favorably with a previously reported BMC loss of 13.5% by Picard and colleagues who used DXA analysis on mouse femurs post-mortem 30 days post-SCI (9). Our results suggest that the IVIS Lumina XR provides a novel, high-resolution/high-magnification method for performing long-term, longitudinal measurements of hind limb bone density in the mouse following SCI.
-
Peripheral neuropathic pain is a severe chronic pain condition which may result from trauma to sensory nerves in the peripheral nervous system. The spared nerve injury (SNI) model induces symptoms of neuropathic pain such as mechanical allodynia i.e. pain due to tactile stimuli that do not normally provoke a painful response [1]. The SNI mouse model involves ligation of two of the three branches of the sciatic nerve (the tibial nerve and the common peroneal nerve), while the sural nerve is left intact [2]. ⋯ A positive pain reaction is defined as sudden paw withdrawal, flinching and/or paw licking induced by the filament. A positive response in three out of five repetitive stimuli is defined as the pain threshold. As demonstrated in the video protocol, C57BL/6 mice experience profound allodynia as early as the day following surgery and maintain this for several weeks.
-
One of the most commonly reported injuries in children who participate in sports is concussion or mild traumatic brain injury (mTBI). Children and youth involved in organized sports such as competitive hockey are nearly six times more likely to suffer a severe concussion compared to children involved in other leisure physical activities. While the most common cognitive sequelae of mTBI appear similar for children and adults, the recovery profile and breadth of consequences in children remains largely unknown, as does the influence of pre-injury characteristics (e.g. gender) and injury details (e.g. magnitude and direction of impact) on long-term outcomes. ⋯ By using telemetric technology, the magnitude of acceleration and location of all head impacts during sport participation can be objectively detected and recorded. We also use functional magnetic resonance imaging (fMRI) to localize and assess changes in neural activity specifically in the medial temporal and frontal lobes during the performance of cognitive tasks, since those are the cerebral regions most sensitive to concussive head injury. Finally, we are acquiring structural imaging data sensitive to damage in brain white matter.
-
Murine models are extensively used to investigate acute injuries of different organs systems. Acute lung injury (ALI), which occurs with prolonged mechanical ventilation, contributes to morbidity and mortality of critical illness, and studies on novel genetic or pharmacological targets are areas of intense investigation. ALI is defined by the acute onset of the disease, which leads to non-cardiac pulmonary edema and subsequent impairment of pulmonary gas exchange. ⋯ As outcome parameters, pulmonary edema (wet-to-dry ratio), bronchoalveolar fluid albumin content, bronchoalveolar fluid and pulmonary tissue myeloperoxidase content and pulmonary gas exchange are assessed. Using this technique we could show that it sufficiently induces acute lung inflammation and can distinguish between different treatment groups or genotypes. Therefore this technique may be helpful for researchers who pursue molecular mechanisms involved in ALI using a genetic approach in mice with gene-targeted deletion.