Journal of visualized experiments : JoVE
-
Acute respiratory distress syndrome (ARDS) is a syndrome of diffuse alveolar injury with impaired alveolar fluid clearance and severe inflammation. The use of halogenated agents, such as sevoflurane or isoflurane, for the sedation of intensive care unit (ICU) patients can improve gas exchange, reduce alveolar edema, and attenuate inflammation during ARDS. However, data on the use of inhaled agents for continuous sedation in the ICU to treat or prevent lung damage is lacking. ⋯ After the first hour, the concentrations of sevoflurane and isoflurane in the medium were 251 mg/L and 25 mg/L, respectively. The curves representing the concentrations of both sevoflurane and isoflurane dissolved in the medium showed similar courses over time, with a plateau reached at one hour after exposure. This protocol was specifically designed to reach precise and controlled concentrations of sevoflurane or isoflurane in vitro to improve our understanding of mechanisms involved in epithelial lung injury during ARDS and to test novel therapies for the syndrome.
-
The astonishing clinical success of CD19 chimeric antigen receptor (CAR) T-cell therapy has led to the approval of two second generation chimeric antigen receptors (CARs) for acute lymphoblastic leukemia (ALL) andnon-Hodgkin lymphoma (NHL). The focus of the field is now on emulating these successes in other hematological malignancies where less impressive complete response rates are observed. Further engineering of CAR T cells or co-administration of other treatment modalities may successfully overcome obstacles to successful therapy in other cancer settings. ⋯ Anti-cancer activity is monitored by in vivo bioluminescence and disease progression. We show typical results of eradication of established B-cell lymphoma when utilizing 1st or 2nd generation CARs in combination with lymphodepleting pre-conditioning and a minority of mice achieving long term remissions when utilizing CAR T cells expressing IL-12 in lymphoreplete mice. These protocols can be used to evaluate CD19 CAR T cells with different additional modification, combinations of CAR T cells and other therapeutic agents or adapted for the use of CAR T cells against different target antigens.