Handbook of clinical neurology
-
Delirium is common in critically ill patients and associated with increased length of stay in the intensive care unit (ICU) and long-term cognitive impairment. The pathophysiology of delirium has been explained by neuroinflammation, an aberrant stress response, neurotransmitter imbalances, and neuronal network alterations. Delirium develops mostly in vulnerable patients (e.g., elderly and cognitively impaired) in the throes of a critical illness. ⋯ Nonpharmacologic strategies with early mobilization, reducing causes for sleep deprivation, and reorientation measures may be effective in the prevention of delirium. Antipsychotics are effective in treating hallucinations and agitation, but do not reduce the duration of delirium. Combined pain, agitation, and delirium protocols seem to improve the outcome of critically ill patients and may reduce delirium incidence.
-
The cerebrospinal fluid (CSF) space consists of the intracerebral ventricles, subarachnoid spaces of the spine and brain (e.g., cisterns and sulci), and the central spinal cord canal. The CSF protects the central nervous system (CNS) in different ways involving metabolic homeostasis, supply of nutrients, functioning as lymphatic system, and regulation of intracranial pressure. CSF is produced by the choroid plexus, brain interstitium, and meninges, and it circulates in a craniocaudal direction from ventricles to spinal subarachnoid space from where it is removed via craniocaudal lymphatic routes and the venous system. ⋯ The extracellular space volume, potassium buffering, CSF circulation, and interstitial fluid absorption are mainly regulated by aquaporin-4 channels, which are abundantly located at the blood-brain and brain-CSF interfaces. The composition of CSF shows a high dynamic range, and the levels of distinct proteins vary due to several influencing factors, such as site of production (brain or blood-derived), site of sampling (ventricular or lumbar), CSF flow rate (BCB function), diurnal fluctuations of CSF production rate, and finally, molecular size of blood-derived proteins (IgM vs. albumin) and circadian rhythm (glucose, prostaglandin D synthase). Alterations of lumbar CSF are mainly influenced by processes of the CNS located adjacent to the ventricular and spinal CSF space and less by pathologies in cortical areas remote from the ventricles.
-
Neurocritical care has two main objectives. Initially, the emphasis is on treatment of patients with acute damage to the central nervous system whether through infection, trauma, or hemorrhagic or ischemic stroke. Thereafter, attention shifts to the identification of secondary processes that may lead to further brain injury, including fever, seizures, and ischemia, among others. ⋯ The concepts and design of each monitor, in addition to the patient population that may most benefit from each modality, will be discussed, along with the various tools that can be used together to guide individualized patient treatment options. Major clinical trials, observational studies, and their effect on clinical outcomes will be reviewed. The future of multimodal monitoring in the field of bioinformatics, clinical research, and device development will conclude the chapter.
-
Review Case Reports
Natural history of cerebral cavernous malformations.
Cerebral cavernous malformations (CCM) are vascular abnormalities of the central nervous system with an incidence of 0.4-0.5% and an annual rate of hemorrhage ranging from 0.7% to 1%. Most lesions are located in the cerebral hemisphere but some occur in deeper locations such as the basal ganglia and pons. The most common symptoms during presentation are headache, seizures, and focal neurologic deficits. ⋯ This finding, however, is not consistent in all natural history studies evaluated. During follow-up, the most important and consistent risk factor for rebleed was a prior hemorrhage. Here, we provide an indepth but concise review of the literature regarding the natural history of CCMs.
-
Traumatic brain injury (TBI) is a growing global problem, which is responsible for a substantial burden of disability and death, and which generates substantial healthcare costs. High-quality intensive care can save lives and improve the quality of outcome. ⋯ However, observational studies have informed the development of authoritative international guidelines, and the use of multimodality monitoring may facilitate rational approaches to optimizing acute physiology, allowing clinicians to optimize the balance between benefit and risk from these interventions in individual patients. Such approaches, along with the emerging impact of advanced neuroimaging, genomics, and protein biomarkers, could lead to the development of precision medicine approaches to the intensive care management of TBI.