Pulmonary circulation
-
Pulmonary circulation · Jan 2018
The impact of ambrisentan and tadalafil upfront combination therapy on cardiac function in scleroderma associated pulmonary arterial hypertension patients: cardiac magnetic resonance feature tracking study.
The aim of this study was to evaluate the effect of upfront combination therapy with ambrisentan and tadalafil on left ventricular (LV) and right ventricular (RV) function in patients with systemic sclerosis-associated pulmonary arterial hypertension (SSc-PAH). LV and RV peak longitudinal and circumferential strain and strain rate (SR), which consisted of peak systolic SR (SRs), peak early diastolic SR (SRe), and peak atrial-diastolic SR (SRa) were analyzed using cardiac magnetic resonance imaging (CMRI) data from the recently published ATPAHSS-O trial (ambrisentan and tadalafil upfront combination therapy in SSc-PAH). Twenty-one patients completed the study protocol. ⋯ Increased cardiac index was associated with improved LV pGLSRe, and reduction in mean right atrial pressure was correlated with improved RVFW pLS and pLSRa. Combination therapy was associated with a significant improvement in both RV and LV function as assessed by CMR-derived strain and SR. Importantly, the improvement in RV and LV strain and SR correlated with improvements in known prognostic markers of PAH. (Approved by clinicaltrials.gov [NCT01042158] before patient recruitment.).
-
Pulmonary circulation · Jan 2018
COPD as an endothelial disorder: endothelial injury linking lesions in the lungs and other organs? (2017 Grover Conference Series).
Chronic obstructive pulmonary disease (COPD) is characterized by chronic expiratory airflow obstruction that is not fully reversible. COPD patients develop varying degrees of emphysema, small and large airway disease, and various co-morbidities. It has not been clear whether these co-morbidities share common underlying pathogenic processes with the pulmonary lesions. ⋯ More recently, cigarette smoke-induced endothelial dysfunction/injury have been linked to the pulmonary lesions in COPD (especially emphysema) and systemic co-morbidities including atherosclerosis, pulmonary hypertension, and chronic renal injury. Herein, we review the evidence linking endothelial injury to COPD, and the pathways underlying endothelial injury and the "vascular COPD phenotype" including: (1) direct toxic effects of cigarette smoke on endothelial cells; (2) generation of auto-antibodies directed against endothelial cells; (3) vascular inflammation; (4) increased oxidative stress levels in vessels inducing increases in lipid peroxidation and increased activation of the receptor for advanced glycation end-products (RAGE); (5) reduced activation of the anti-oxidant pathways in endothelial cells; (6) increased endothelial cell release of mediators with vasoconstrictor, pro-inflammatory, and remodeling activities (endothelin-1) and reduced endothelial cell expression of mediators that promote vasodilation and homeostasis of endothelial cells (nitric oxide synthase and prostacyclin); and (7) increased endoplasmic reticular stress and the unfolded protein response in endothelial cells. We also review the literature on studies of drugs that inhibit RAGE signaling in other diseases (angiotensin-converting enzyme inhibitors and angiotensin receptor blockers), or vasodilators developed for idiopathic pulmonary arterial hypertension that have been tested on cell culture systems, animal models of COPD, and/or smokers and COPD patients.