Archives of toxicology
-
Archives of toxicology · Aug 2009
D-Serine exposure resulted in gene expression changes implicated in neurodegenerative disorders and neuronal dysfunction in male Fischer 344 rats.
D-Serine, an endogenous amino acid, is involved in many physiological processes through its interaction with the glycine binding site of the N-methyl-D-aspartate (NMDA) receptor. It has important roles in development, learning, and cell death signaling. Recent evidence suggests that decreased function of the NMDA receptor is related to the etiology of schizophrenia, and the use of D-serine as add-on therapy is beneficial in alleviating the symptoms of treatment-refractory schizophrenia. ⋯ However, activation of cellular response to counter the toxic effects of D-serine might be hindered due to the down-regulation of such important cellular machinery like RNA metabolism, splicing and processing. Consequently, cell damage might be further exacerbated. Taken together, these findings highlight the potential impacts of D-serine exposure on neuronal functions.