JMIR medical informatics
-
JMIR medical informatics · Jun 2020
Artificial Intelligence-Based Traditional Chinese Medicine Assistive Diagnostic System: Validation Study.
Artificial intelligence-based assistive diagnostic systems imitate the deductive reasoning process of a human physician in biomedical disease diagnosis and treatment decision making. While impressive progress in this area has been reported, most of the reported successes are applications of artificial intelligence in Western medicine. The application of artificial intelligence in traditional Chinese medicine has lagged mainly because traditional Chinese medicine practitioners need to perform syndrome differentiation as well as biomedical disease diagnosis before a treatment decision can be made. Syndrome, a concept unique to traditional Chinese medicine, is an abstraction of a variety of signs and symptoms. The fact that the relationship between diseases and syndromes is not one-to-one but rather many-to-many makes it very challenging for a machine to perform syndrome predictions. So far, only a handful of artificial intelligence-based assistive traditional Chinese medicine diagnostic models have been reported, and they are limited in application to a single disease-type. ⋯ The main contributions of the artificial intelligence-based traditional Chinese medicine assistive diagnostic system proposed in this paper are that 187 commonly known traditional Chinese medicine diseases can be diagnosed and a novel prediction method called an integrated learning model is demonstrated. This new prediction method outperformed all four existing methods in our preliminary experimental results. With further improvement of the algorithms and the availability of additional electronic health record data, it is expected that a wider range of traditional Chinese medicine disease-types could be diagnosed and that better diagnostic accuracies could be achieved.
-
JMIR medical informatics · Jun 2020
Artificial Intelligence-Based Multimodal Risk Assessment Model for Surgical Site Infection (AMRAMS): Development and Validation Study.
Surgical site infection (SSI) is one of the most common types of health care-associated infections. It increases mortality, prolongs hospital length of stay, and raises health care costs. Many institutions developed risk assessment models for SSI to help surgeons preoperatively identify high-risk patients and guide clinical intervention. However, most of these models had low accuracies. ⋯ Our AMRAMS based on EMR data and deep learning methods-CNN and self-attention network-had significant advantages in terms of accuracy compared with other conventional machine learning methods and the NNIS risk index. Moreover, the semantic embeddings of preoperative notes improved the model performance further. Our models could replace the NNIS risk index to provide personalized guidance for the preoperative intervention of SSIs. Through this case, we offered an easy-to-implement solution for building multimodal RAMs for other similar scenarios.