JMIR medical informatics
-
JMIR medical informatics · May 2021
Predicting Intensive Care Unit Length of Stay and Mortality Using Patient Vital Signs: Machine Learning Model Development and Validation.
Patient monitoring is vital in all stages of care. In particular, intensive care unit (ICU) patient monitoring has the potential to reduce complications and morbidity, and to increase the quality of care by enabling hospitals to deliver higher-quality, cost-effective patient care, and improve the quality of medical services in the ICU. ⋯ The novelty in our approach is that we built models to predict ICU length of stay and mortality with reasonable accuracy based on a combination of ML and the quantiles approach that utilizes only vital signs available from the patient's profile without the need to use any external features. This approach is based on feature engineering of the vital signs by including their modified means, standard deviations, and quantile percentages of the original features, which provided a richer dataset to achieve better predictive power in our models.