JMIR medical informatics
-
JMIR medical informatics · Jul 2020
The Role of Health Technology and Informatics in a Global Public Health Emergency: Practices and Implications From the COVID-19 Pandemic.
At present, the coronavirus disease (COVID-19) is spreading around the world. It is a critical and important task to take thorough efforts to prevent and control the pandemic. ⋯ The application of emerging health technologies and digital practices in health care, such as artificial intelligence, telemedicine or telehealth, mobile health, big data, 5G, and the Internet of Things, have become powerful "weapons" to fight against the pandemic and provide strong support in pandemic prevention and control. Applications and evaluations of all of these technologies, practices, and health delivery services are highlighted in this study.
-
JMIR medical informatics · Jul 2020
Accurate Prediction of Coronary Heart Disease for Patients With Hypertension From Electronic Health Records With Big Data and Machine-Learning Methods: Model Development and Performance Evaluation.
Predictions of cardiovascular disease risks based on health records have long attracted broad research interests. Despite extensive efforts, the prediction accuracy has remained unsatisfactory. This raises the question as to whether the data insufficiency, statistical and machine-learning methods, or intrinsic noise have hindered the performance of previous approaches, and how these issues can be alleviated. ⋯ We demonstrated that accurate risk prediction of CHD from EHRs is possible given a sufficiently large population of training data. Sophisticated machine-learning methods played an important role in tackling the heterogeneity and nonlinear nature of disease prediction. Moreover, accumulated EHR data over multiple time points provided additional features that were valuable for risk prediction. Our study highlights the importance of accumulating big data from EHRs for accurate disease predictions.
-
JMIR medical informatics · Jun 2020
Artificial Intelligence-Based Traditional Chinese Medicine Assistive Diagnostic System: Validation Study.
Artificial intelligence-based assistive diagnostic systems imitate the deductive reasoning process of a human physician in biomedical disease diagnosis and treatment decision making. While impressive progress in this area has been reported, most of the reported successes are applications of artificial intelligence in Western medicine. The application of artificial intelligence in traditional Chinese medicine has lagged mainly because traditional Chinese medicine practitioners need to perform syndrome differentiation as well as biomedical disease diagnosis before a treatment decision can be made. Syndrome, a concept unique to traditional Chinese medicine, is an abstraction of a variety of signs and symptoms. The fact that the relationship between diseases and syndromes is not one-to-one but rather many-to-many makes it very challenging for a machine to perform syndrome predictions. So far, only a handful of artificial intelligence-based assistive traditional Chinese medicine diagnostic models have been reported, and they are limited in application to a single disease-type. ⋯ The main contributions of the artificial intelligence-based traditional Chinese medicine assistive diagnostic system proposed in this paper are that 187 commonly known traditional Chinese medicine diseases can be diagnosed and a novel prediction method called an integrated learning model is demonstrated. This new prediction method outperformed all four existing methods in our preliminary experimental results. With further improvement of the algorithms and the availability of additional electronic health record data, it is expected that a wider range of traditional Chinese medicine disease-types could be diagnosed and that better diagnostic accuracies could be achieved.
-
JMIR medical informatics · Jun 2020
Artificial Intelligence-Based Multimodal Risk Assessment Model for Surgical Site Infection (AMRAMS): Development and Validation Study.
Surgical site infection (SSI) is one of the most common types of health care-associated infections. It increases mortality, prolongs hospital length of stay, and raises health care costs. Many institutions developed risk assessment models for SSI to help surgeons preoperatively identify high-risk patients and guide clinical intervention. However, most of these models had low accuracies. ⋯ Our AMRAMS based on EMR data and deep learning methods-CNN and self-attention network-had significant advantages in terms of accuracy compared with other conventional machine learning methods and the NNIS risk index. Moreover, the semantic embeddings of preoperative notes improved the model performance further. Our models could replace the NNIS risk index to provide personalized guidance for the preoperative intervention of SSIs. Through this case, we offered an easy-to-implement solution for building multimodal RAMs for other similar scenarios.
-
JMIR medical informatics · May 2020
Detecting False Alarms by Analyzing Alarm-Context Information: Algorithm Development and Validation.
Although alarm safety is a critical issue that needs to be addressed to improve patient care, hospitals have not given serious consideration about how their staff should be using, setting, and responding to clinical alarms. Studies have indicated that 80%-99% of alarms in hospital units are false or clinically insignificant and do not represent real danger for patients, leading caregivers to miss relevant alarms that might indicate significant harmful events. The lack of use of any intelligent filter to detect recurrent, irrelevant, and/or false alarms before alerting health providers can culminate in a complex and overwhelming scenario of sensory overload for the medical team, known as alarm fatigue. ⋯ Experiments were conducted to demonstrate that by providing an intelligent notification system, we could decide how to identify false alarms by analyzing alarm-context information. The reasoner entity we described in this paper was able to attribute FAP values to alarms based on FAIs and to notify caregivers with a FAP_LABEL indication without compromising patient safety.