Cortex; a journal devoted to the study of the nervous system and behavior
-
Rich behavioral evidence indicates that the brain estimates the visual direction and acceleration of gravity quite accurately, and the underlying mechanisms have begun to be unraveled. While the neuroanatomical substrates of gravity direction processing have been studied extensively in brain-damaged patients, to our knowledge no such study exists for the processing of visual gravitational motion. Here we asked 31 stroke patients to intercept a virtual ball moving along the vertical under either natural gravity or artificial reversed gravity. ⋯ Both the posterior insula and the parietal operculum belong to the vestibular cortex, and presumably receive multisensory information about the gravity vector. We speculate that an internal model estimating the effects of gravity on visual objects is constructed by transforming the vestibular estimates of mechanical gravity, which are computed in the brainstem and cerebellum, into internalized estimates of virtual gravity, which are stored in the cortical vestibular network. The present lesion data suggest a specific role for the parietal operculum in detecting the mismatch between predictive signals from the internal model and the online visual signals.
-
It is generally believed that the human right cerebral hemisphere plays a dominant role in corporeal awareness, which is highly associated with conscious experience of the physical self. Prompted by our previous findings, we examined whether the right frontoparietal activations often observed when people experience kinesthetic illusory limb movement are supported by a large-scale brain network connected by a specific branch of the superior longitudinal fasciculus fiber tracts (SLF I, II, and III). We scanned brain activity with functional magnetic resonance imaging (MRI) while nineteen blindfolded healthy volunteers experienced illusory movement of the right stationary hand elicited by tendon vibration, which was replicated after the scanning. ⋯ Among these regions, activities in the right inferior parietal cortices and inferior frontal cortices showed right-side dominance and correlated well with the amount of illusion (kinesthetic illusory awareness) experienced by the participants. The results illustrated the predominant involvement of the right inferior frontoparietal network connected by SLF III when people recognize postural changes of their limb. We assume that the network bears a series of functions, specifically, monitoring the current status of the musculoskeletal system, and building-up and updating our postural model (body schema), which could be a basis for the conscious experience of the physical self.