Physiological reports
-
Physiological reports · Dec 2014
Downregulation of cystathionine β-synthase and cystathionine γ-lyase expression stimulates inflammation in kidney ischemia-reperfusion injury.
Inflammation plays a critical role in kidney ischemia-reperfusion injury but mechanisms of increased proinflammatory cytokine expression are not completely understood. Kidney has a high expression of cystathionine-β-synthase (CBS) and cystathionine-γ-lyase (CSE) that can synthesize hydrogen sulfide. CBE and CSE are also responsible for the synthesis of cysteine, an essential precursor for glutathione, an antioxidant. ⋯ Supplementation of glutathione or hydrogen sulfide donor (NaHS) effectively attenuated cytokine expression in tubular cells. These results suggested that ischemia-reperfusion impaired CBS and CSE-mediated glutathione and hydrogen sulfide production in the kidney, which augmented the expression of proinflammatory cytokines. Regulation of CBS and CSE expression may be therapeutically relevant in alleviating ischemia-reperfusion-induced inflammation and improving kidney function.
-
Physiological reports · Dec 2014
Partial weight support differentially affects corticomotor excitability across muscles of the upper limb.
Partial weight support may hold promise as a therapeutic adjuvant during rehabilitation after stroke by providing a permissive environment for reducing the expression of abnormal muscle synergies that cause upper limb impairment. We explored the neurophysiological effects of upper limb weight support in 13 healthy young adults by measuring motor-evoked potentials (MEPs) from transcranial magnetic stimulation (TMS) of primary motor cortex and electromyography from anterior deltoid (AD), biceps brachii (BB), extensor carpi radialis (ECR), and first dorsal interosseous (FDI). Five levels of weight support, varying from none to full, were provided to the arm using a commercial device (Saebo Mobile Arm Support). ⋯ For FDI, the SR plateau increased at the highest support level (P = 0.0003). These results indicate that weight support of the proximal upper limb modulates corticomotor excitability across the forearm and hand. The findings support a model of integrated control of the upper limb and may inform the use of weight support in clinical settings.