Physiological reports
-
Physiological reports · Feb 2014
GDNF content and NMJ morphology are altered in recruited muscles following high-speed and resistance wheel training.
Glial cell line-derived neurotrophic factor (GDNF) may play a role in delaying the onset of aging and help compress morbidity by preventing motor unit degeneration. Exercise has been shown to alter GDNF expression differently in slow- and fast-twitch myofibers. The aim was to examine the effects of different intensities (10, 20, ~30, and ~40 m·min(-1)) of wheel running on GDNF expression and neuromuscular junction (NMJ) plasticity in slow- and fast-twitch myofibers. ⋯ VOL-R training also resulted in more dispersed synapses in the PLA muscle when compared to age-matched controls (P <0.05). Higher intensity exercise (>30 m/min) can increase GDNF protein content in fast-twitch myofibers as well as induce changes in the NMJ morphology. These findings help to inform exercise prescription to preserve the integrity of the neuromuscular system through aging and disease.