Journal of immunology research
-
Pathogen-associated molecular patterns (PAMPs) are some nonspecific and highly conserved molecular structures of exogenous specific microbial pathogens, whose products can be recognized by pattern recognition receptor (PRR) on innate immune cells and induce an inflammatory response. Under physiological stress, activated or damaged cells might release some endogenous proteins that can also bind to PRR and cause a harmful aseptic inflammatory response. These endogenous proteins were named damage-associated molecular patterns (DAMPs) or alarmins. ⋯ Besides, some alarmin cytokines have been reported to have both nuclear and extracellular effects. This group of proteins includes high-mobility group box-1 protein (HMGB1), interleukin (IL)-33, IL-1α, IL-1F7b, and IL-16. In this article, we review the involvement of nuclear alarmins such as HMGB1, IL-33, and IL-1α under physiological state or stress state and suggest a novel activity of these molecules as central initiators in the development of sterile inflammation.
-
Chimeric antigen receptor- (CAR-) T cell therapy is one of the most recent innovative immunotherapies and is rapidly evolving. Like other technologies, CAR-T cell therapy has undergone a long development process, and persistent explorations of the actions of the intracellular signaling domain and make several improvements have led to the superior efficacy when anti-CD19 CAR-T cell treatments in B cell cancers. At present, CAR-T cell therapy is developing rapidly, and many clinical trials have been established on a global scale, which has great commercial potential. This review mainly describes the toxicity of CAR-T cell therapy and the challenges of CAR-T cells in the treatment of solid tumors, and looks forward to future development and opportunities for immunotherapy and reviews major breakthroughs in CAR-T cell therapy.
-
Coronavirus Disease 2019 (COVID-19) has become a major health problem causing severe acute respiratory illness in humans. It has spread rapidly around the globe since its first identification in Wuhan, China, in December 2019. The causative virus is called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and the World Health Organization (WHO) named the new epidemic disease Coronavirus Disease (COVID-19). ⋯ There is currently no specific treatment or vaccine against COVID-19. Therefore, in the absence of pharmaceutical interventions, the implementation of precautions and hygienic measures will be essential to control and to minimize human transmission of the virus. In this review, we highlight the epidemiology, transmission, symptoms, and treatment of this disease, as well as future strategies to manage the spread of this fatal coronavirus.
-
The global health crisis caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causal agent of COVID-19, has resulted in a negative impact on human health and on social and economic activities worldwide. Researchers around the globe need to design and develop successful therapeutics as well as vaccines against the novel COVID-19 disease. In the present study, we conducted comprehensive computer-assisted analysis on the spike glycoprotein of SARS-CoV-2 in order to design a safe and potent multiepitope vaccine. ⋯ Moreover, it was found that this interaction was thermodynamically feasible. In conclusion, our data supports the proposition that a multiepitope vaccine will provide protective immunity against COVID-19. However, further in vivo and in vitro experiments are needed to validate the immunogenicity and safety of the candidate vaccine.
-
The recent outbreak of the novel coronavirus disease, COVID-19, has highlighted the threat that highly pathogenic coronaviruses have on global health security and the imminent need to design an effective vaccine for prevention purposes. Although several attempts have been made to develop vaccines against human coronavirus infections since the emergence of Severe Acute Respiratory Syndrome coronavirus (SARS-CoV) in 2003, there is no available licensed vaccine yet. ⋯ In general, coronavirus spike protein is the major antigen for the vaccine design as it can induce neutralizing antibodies and protective immunity. By considering the high genetic similarity between SARS-CoV and SARS-CoV-2, here, protective immunity against SARS-CoV spike subunit vaccine candidates in animal models has been reviewed to gain advances that can facilitate coronavirus vaccine development in the near future.