Antioxidants & redox signaling
-
Antioxid. Redox Signal. · Nov 2019
ReviewGenomic and Genetic Approaches to Deciphering Acute Respiratory Distress Syndrome Risk and Mortality.
Significance: Acute respiratory distress syndrome (ARDS) is a severe, highly heterogeneous critical illness with staggering mortality that is influenced by environmental factors, such as mechanical ventilation, and genetic factors. Significant unmet needs in ARDS are addressing the paucity of validated predictive biomarkers for ARDS risk and susceptibility that hamper the conduct of successful clinical trials in ARDS and the complete absence of novel disease-modifying therapeutic strategies. Recent Advances: The current ARDS definition relies on clinical characteristics that fail to capture the diversity of disease pathology, severity, and mortality risk. ⋯ We further attempted to address the well-known health disparities that exist in susceptibility to and mortality from ARDS. Critical Issues: Bioinformatic analyses identified 201 ARDS candidate genes with pathway analysis indicating a strong predominance in key evolutionarily conserved inflammatory pathways, including reactive oxygen species, innate immunity-related inflammation, and endothelial vascular signaling pathways. Future Directions: Future studies employing a system biology approach that combines clinical characteristics, genomics, transcriptomics, and proteomics may allow for a better definition of biologically relevant pathways and genotype-phenotype connections and result in improved strategies for the sub-phenotyping of diverse ARDS patients via molecular signatures. These efforts should facilitate the potential for successful clinical trials in ARDS and yield a better fundamental understanding of ARDS pathobiology.
-
Antioxid. Redox Signal. · Jan 2019
ReviewAutophagy: A Lysosome-Dependent Process with Implications in Cellular Redox Homeostasis and Human Disease.
Autophagy, a lysosome-dependent homeostatic process inherent to cells and tissues, has emerging significance in the pathogenesis of human disease. This process enables the degradation and turnover of cytoplasmic substrates via membrane-dependent sequestration in autophagic vesicles (autophagosomes) and subsequent lysosomal delivery of cargo. Recent Advances: Selective forms of autophagy can target specific substrates (e.g., organelles, protein aggregates, and lipids) for processing. Autophagy is highly regulated by oxidative stress, including exposure to altered oxygen tension, by direct and indirect mechanisms, and contributes to inducible defenses against oxidative stress. Mitochondrial autophagy (mitophagy) plays a critical role in the oxidative stress response, through maintenance of mitochondrial integrity. ⋯ Investigations that further elucidate the complex role of autophagy in the pathogenesis of disease will facilitate targeting this pathway for therapies in specific diseases.
-
Antioxid. Redox Signal. · Dec 2015
ReviewInsights into the Role of Chemokines, Damage-Associated Molecular Patterns, and Lymphocyte-Derived Mediators from Computational Models of Trauma-Induced Inflammation.
Traumatic injury elicits a complex, dynamic, multidimensional inflammatory response that is intertwined with complications such as multiple organ dysfunction and nosocomial infection. The complex interplay between inflammation and physiology in critical illness remains a challenge for translational research, including the extrapolation to human disease from animal models. ⋯ These insights from data-driven models into the primary drivers and interconnected networks of inflammation have been used to generate mechanistic computational models. Together, these models may be used to gain basic insights as well as serving to help define novel biomarkers and therapeutic targets.
-
Antioxid. Redox Signal. · Sep 2014
ReviewThe mechanisms and physiological relevance of glycocalyx degradation in hepatic ischemia/reperfusion injury.
Hepatic ischemia/reperfusion (I/R) injury is an inevitable side effect of major liver surgery that can culminate in liver failure. The bulk of I/R-induced liver injury results from an overproduction of reactive oxygen and nitrogen species (ROS/RNS), which inflict both parenchymal and microcirculatory damage. A structure that is particularly prone to oxidative attack and modification is the glycocalyx (GCX), a meshwork of proteoglycans and glycosaminoglycans (GAGs) that covers the lumenal endothelial surface and safeguards microvascular homeostasis. ROS/RNS-mediated degradation of the GCX may exacerbate I/R injury by, for example, inducing vasoconstriction, facilitating leukocyte adherence, and directly activating innate immune cells. ⋯ The relative contribution of the different ROS and RNS intermediates to GCX degradation in vivo, the immunogenic potential of the shed GCX fragments, and the role of heparanase in liver I/R injury all warrant further investigation.
-
Stigmatized as a toxic environmental pollutant for centuries, hydrogen sulfide (H2S) has gained recognition over the last decade as an important gasotransmitter that functions in physiological and pathophysiological conditions, such as atherosclerosis. ⋯ The efficiency and safety profile of H2S-based therapeutic approaches should be refined, and the mechanisms by which H2S exerts its beneficial effects should be elucidated to develop more specific and potent therapeutic strategies to treat atherosclerosis. Whether the therapeutic effects of H2S in animal studies are transferable to clinical studies merits future investigation.