The Journal of molecular diagnostics : JMD
-
Significant barriers, such as lack of professional guidelines, specialized training for interpretation of pharmacogenomics (PGx) data, and insufficient evidence to support clinical utility, prevent preemptive PGx testing from being widely clinically implemented. The current study, as a pilot project for the Right Drug, Right Dose, Right Time-Using Genomic Data to Individualize Treatment Protocol, was designed to evaluate the impact of preemptive PGx and to optimize the workflow in the clinic setting. We used an 84-gene next-generation sequencing panel that included SLCO1B1, CYP2C19, CYP2C9, and VKORC1 together with a custom-designed CYP2D6 testing cascade to genotype the 1013 subjects in laboratories approved by the Clinical Laboratory Improvement Act. ⋯ The fraction of this cohort carrying actionable PGx variant(s) in individual genes ranged from 30% (SLCO1B1) to 79% (CYP2D6). When considering all five genes together, 99% of the subjects carried an actionable PGx variant(s) in at least one gene. Our study provides evidence in favor of preemptive PGx testing by identifying the risk of a variant being present in the population we studied.
-
The methylation status of the O(6)-methylguanine-DNA methyltransferase (MGMT) gene is an important predictive biomarker for benefit from alkylating agent therapy in glioblastoma. Our model MGMT-STP27 allows prediction of the methylation status of the MGMT promoter using data from the Illumina's Human Methylation BeadChips (HM-27K and HM-450K) that is publically available for many cancer data sets. Here, we investigate the impact of the context of genetic and epigenetic alterations and tumor type on the classification and report on technical aspects, such as robustness of cutoff definition and preprocessing of the data. ⋯ A sensitivity analyses corroborated the performance of the original cutoff for various optimization criteria and for most data preprocessing methods. Finally, we propose an R package mgmtstp27 that allows prediction of the methylation status of the MGMT promoter and calculation of appropriate confidence and/or prediction intervals. Overall, MGMT-STP27 is a robust model for MGMT classification that is independent of tumor type and is adapted for single sample prediction.