The journal of pain : official journal of the American Pain Society
-
Estrogen reportedly facilitates visceral nociception at the spinal or supraspinal level. The present study was aimed to investigate whether estrogen modulates visceral pain through the vagal pathway. Ovariectomized rats received estradiol, which was administered subcutaneously (to act through both the vagal and spinal pathways) or intraduodenally (to preferentially act through the vagal pathway). Luminally applied estradiol induced a rapid and significant decrease in the visceromotor response to colorectal distension, with increased c-Fos expression in nodose ganglion neurons. Systemically injected estradiol increased visceromotor response and c-Fos expression in both nodose and dorsal root ganglion (T6-12) neurons. The antinociceptive effect of estrogen was abolished by surgical vagotomy or chemical denervation of vagal afferents. Both luminally and systemically administered estradiol elicited selective 5-hydroxytryptamine secretion from the duodenum. Granisetron, a 5-hydroxytryptamine 3 receptor antagonist, reversed the antinociceptive effect of estrogen. Intestinal mucosal mast cell stabilizers prevented estradiol-induced antinociception and 5-hydroxytryptamine secretion. Ultrastructural analysis revealed that estradiol caused piecemeal degranulation of intestinal mucosal mast cells. The actions of estradiol were inhibited by an estrogen receptor β antagonist and mimicked by an estrogen receptor β agonist. These results suggest that estrogen can trigger vagus-mediated antinociception, which is masked by its spinally mediated pronociception. ⋯ This study is the first to show a vagus-mediated estrogenic antinociception, in which the nongenomic estrogen receptor β-mediated, intestinal mucosal mast cell-derived 5-hydroxytryptamine/5-hydroxytryptamine 3 receptor pathway is involved. This work may provide new insights into the sex hormone modulation of visceral sensitivity related to irritable bowel syndrome and indicate potential therapeutic targets to manage this disease.
-
Decreased voluntary wheel running has recently been proposed as a preclinical pain measure for inflammatory pain, but whether this reflects pain evoked by use of the affected limbs is unknown. To assess the role of inflammation site as a determinant of this measure, complete Freund's adjuvant (CFA), formalin, or equivolume vehicle was subcutaneously injected into the plantar surface of the hind paws (bilateral) or L1 dorsum dermatome (leaving paws unaffected) of male Sprague Dawley rats. CFA-induced hind paw mechanical allodynia (P < .001) did not correlate with reduced voluntary wheel running. Intraplantar formalin did not attenuate voluntary running, despite eliciting robust licking/writhing/flinching behavior and hind paw mechanical allodynia (P < .001). Subcutaneous L1 dorsum dermatome formalin, but not CFA, induced licking/writhing/flinching behavior (P < .001), but neither induced hind paw mechanical allodynia or attenuated voluntary running. That voluntary running is decreased by hind paw CFA, but not by L1 dorsum CFA, implies that the behavior is a measure of CFA-induced pain evoked by use of the affected limbs rather than supraspinal pain processing that is independent of inflammation site. Furthermore, the results suggest that interpretation of voluntary wheel running data cannot simply be explained by correlation with mechanical allodynia. ⋯ Whether decreased voluntary running is dependent on inflammation site is unknown. We show that intraplantar, but not L1 dorsum, CFA suppressed voluntary running and formalin-induced licking/writhing/flinching behavior but had no effect on voluntary running. These data suggest that suppressed voluntary running by CFA likely reflects pain evoked by use of the affected limbs.
-
α1-Adrenoceptor expression on nociceptors may play an important role in sympathetic-sensory coupling in certain neuropathic pain syndromes. The aim of this study was to determine whether α1-adrenoceptor expression was upregulated on surviving peptidergic, nonpeptidergic, and myelinated nerve fiber populations in the skin after chronic constriction injury of the sciatic nerve in rats. Seven days after surgery, α1-adrenoceptor expression was upregulated in the epidermis and on dermal nerve fibers in plantar skin ipsilateral to the injury but not around blood vessels. This α1-adrenoceptor upregulation in the plantar skin was observed on all nerve fiber populations examined. However, α1-adrenoceptor expression was unaltered in the dorsal hind paw skin after the injury. The increased expression of α1-adrenoceptors on cutaneous nociceptors in plantar skin after chronic constriction injury suggests that this may be a site of sensory-sympathetic coupling that increases sensitivity to adrenergic agonists after nerve injury. In addition, activation of upregulated α1-adrenoceptors in the epidermis might cause release of factors that stimulate nociceptive signaling. ⋯ Our findings indicate that peripheral nerve injury provokes upregulation of α1-adrenoceptors on surviving nociceptive afferents and epidermal cells in the skin. This might contribute to sympathetically maintained pain in conditions such as complex regional pain syndrome, painful diabetic neuropathy, and postherpetic neuralgia.
-
Randomized Controlled Trial
Latent myofascial trigger points are associated with an increased intramuscular electromyographic activity during synergistic muscle activation.
The aim of this study was to evaluate intramuscular muscle activity from a latent myofascial trigger point (MTP) in a synergistic muscle during isometric muscle contraction. Intramuscular activity was recorded with an intramuscular electromyographic (EMG) needle inserted into a latent MTP or a non-MTP in the upper trapezius at rest and during isometric shoulder abduction at 90° performed at 25% of maximum voluntary contraction in 15 healthy subjects. Surface EMG activities were recorded from the middle deltoid muscle and the upper, middle, and lower parts of the trapezius muscle. Maximal pain intensity and referred pain induced by EMG needle insertion and maximal pain intensity during contraction were recorded on a visual analog scale. The results showed that higher visual analog scale scores were observed following needle insertion and during muscle contraction for latent MTPs than non-MTPs (P < .01). The intramuscular EMG activity in the upper trapezius muscle was significantly higher at rest and during shoulder abduction at latent MTPs compared with non-MTPs (P < .001). This study provides evidence that latent MTPs are associated with increased intramuscular, but not surface, EMG amplitude of synergist activation. The increased amplitude of synergistic muscle activation may result in incoherent muscle activation pattern of synergists inducing spatial development of new MTPs and the progress to active MTPs. ⋯ This article presents evidence of increased intramuscular, but not surface, muscle activity of latent MTPs during synergistic muscle activation. This incoherent muscle activation pattern may overload muscle fibers in synergists during muscle contraction and may contribute to spatial pain propagation.
-
Postherpetic neuralgia (PHN) is one of the most severe sequelae of herpes zoster events. Several risk factors have been reported for PHN, including old age, severe skin rash, and intense pain. This study therefore aims to evaluate the usefulness of the Self-completed Leeds Assessment of Neuropathic Symptoms and Signs pain scale (S-LANSS) in conjunction with previously reported risk factors for predicting PHN. A group of herpes zoster patients (N = 305) were included in the cohort study. Subjects were asked for their demographic information, clinical symptoms and signs, intensity of pain by visual analog scale (VAS), and S-LANSS. They were followed up in clinical visits or via telephone for 12 months. Nineteen patients (6.2%) suffered from PHN in this study. Using logistic regression, 3 risk factors for PHN were identified: age ≥70 years, high VAS scores, and high S-LANSS scores. Prediction of PHN using VAS (≥8) and S-LANSS (≥15) criteria achieved a sensitivity of 78.9% and specificity of 78.0%. Prediction of PHN in elderly patients (≥70 years), using the criteria of VAS (≥6) and S-LANSS (≥15) as well, achieved 100% sensitivity and 57.1% specificity. S-LANSS could be a useful prediction tool for PHN, particularly if combined with previously well-known risk factors and VAS. ⋯ Among acute herpes zoster patients, subjects with characteristics of neuropathic pain showed high frequency of PHN. The tools for screening neuropathic pain like S-LANSS could be helpful for predicting PHN and enabling early intervention of pain management.