American journal of physiology. Gastrointestinal and liver physiology
-
Am. J. Physiol. Gastrointest. Liver Physiol. · Aug 2020
ReviewThe mechanism and treatment of gastrointestinal symptoms in patients with COVID-19.
In addition to the typical respiratory response, new coronavirus disease 2019 (COVID-19) is also associated with very common gastrointestinal symptoms. Cases with gastrointestinal symptoms are more likely to be complicated by liver injury and acute respiratory distress syndrome (ARDS). If not treated in time, coma and circulatory failure may ensue. ⋯ Indeed, after cells in the lungs become infected by SARS-CoV-2, effector CD4+ T cells reach the small intestine through the gut-lung axis, causing intestinal immune damage and diarrhea; early extensive use of antibacterial and antiviral drugs can also lead to diarrhea in patients. Thus, treatment options for COVID-19 patients should be promptly adjusted when they have gastrointestinal symptoms. As SARS-CoV-2 has been detected in the feces of COVID-19 patients, future prevention and control efforts must consider the possibility of fecal-oral transmission of the virus.
-
Am. J. Physiol. Gastrointest. Liver Physiol. · Jan 2017
ReviewIrritable bowel syndrome: a gut microbiota-related disorder?
Irritable bowel syndrome (IBS) is one of the most common gastrointestinal (GI) disorders. Despite its prevalence, the pathophysiology of IBS is not well understood although multiple peripheral and central factors are implicated. Recent studies suggest a role for alterations in gut microbiota in IBS. ⋯ We first describe how gut microbiota can be influenced by factors predisposing individuals to IBS such as host genetics, stress, diet, antibiotics, and early life experiences. We then highlight the known effects of gut microbiota on mechanisms implicated in the pathophysiology of IBS including disrupted gut brain axis (GBA), visceral hypersensitivity (VH), altered GI motility, epithelial barrier dysfunction, and immune activation. While there are several gaps in the field that preclude us from connecting the dots to establish causation, we hope this overview will allow us to identify and fill in the voids.
-
Am. J. Physiol. Gastrointest. Liver Physiol. · Feb 2016
ReviewJAK inhibition using tofacitinib for inflammatory bowel disease treatment: a hub for multiple inflammatory cytokines.
The inflammatory diseases ulcerative colitis and Crohn's disease constitute the two main forms of inflammatory bowel disease (IBD). They are characterized by chronic, relapsing inflammation of the gastrointestinal tract, significantly impacting on patient quality of life and often requiring prolonged treatment. Existing therapies for IBD are not effective for all patients, and an unmet need exists for additional therapies to induce and maintain remission. ⋯ Thus JAK inhibition allows multiple cytokine signaling pathways to be targeted and is expected to modulate the innate and adaptive immune response in IBD, thereby interrupting the cycle of inflammation. Tofacitinib is an oral, small molecule JAK inhibitor that is being investigated as a targeted immunomodulator for IBD. Clinical development of tofacitinib and other JAK inhibitors is ongoing, with the aspiration of providing new treatment options for IBD that have the potential to deliver prolonged efficacy and clinically meaningful patient benefits.
-
Am. J. Physiol. Gastrointest. Liver Physiol. · Nov 2015
ReviewMesenchymal stromal cell therapy in liver disease: opportunities and lessons to be learnt?
End-stage liver disease is responsible for 30,000 deaths per year in the United States alone, and it is continuing to increase every year. With liver transplantation the only curative treatment currently available, new therapies are in great demand. ⋯ With the ability to regulate both the innate and adaptive immune system, as well as both inhibit and promote apoptosis of effector inflammatory cells, there are numerous therapeutic opportunities for MSC in acute and chronic liver disease. This article critically appraises the potential therapeutic roles of MSC in liver disease, as well as the barriers to their adoption into clinical practice.
-
Am. J. Physiol. Gastrointest. Liver Physiol. · Jul 2015
ReviewSelenium and inflammatory bowel disease.
Dietary intake of the micronutrient selenium is essential for normal immune functions. Selenium is cotranslationally incorporated as the 21st amino acid, selenocysteine, into selenoproteins that function to modulate pathways involved in inflammation. Epidemiological studies have suggested an inverse association between selenium levels and inflammatory bowel disease (IBD), which includes Crohn's disease and ulcerative colitis that can potentially progress to colon cancer. ⋯ Changes in cellular oxidative state coupled with altered expression of selenoproteins in macrophages drive the switch from a proinflammatory phenotype to an anti-inflammatory phenotype to efficiently resolve inflammation in the gut and restore epithelial barrier integrity. Such a phenotypic plasticity is accompanied by changes in cytokines, chemokines, and bioactive metabolites, including eicosanoids that not only mitigate inflammation but also partake in restoring gut homeostasis through diverse pathways involving differential regulation of transcription factors such as nuclear factor-κB and peroxisome proliferator-activated receptor-γ. The role of the intestinal microbiome in modulating inflammation and aiding in selenium-dependent resolution of gut injury is highlighted to provide novel insights into the beneficial effects of selenium in IBD.