Frontiers in pediatrics
-
Frontiers in pediatrics · Jan 2017
Review3D Printing in Surgical Management of Double Outlet Right Ventricle.
Double outlet right ventricle (DORV) is a heterogeneous group of congenital heart diseases that require individualized surgical approach based on precise understanding of the complex cardiovascular anatomy. Physical 3-dimensional (3D) print models not only allow fast and unequivocal perception of the complex anatomy but also eliminate misunderstanding or miscommunication among imagers and surgeons. Except for those cases showing well-recognized classic surgical anatomy of DORV such as in cases with a typical subaortic or subpulmonary ventricular septal defect, 3D print models are of enormous value in surgical decision and planning. Furthermore, 3D print models can also be used for rehearsal of the intended procedure before the actual surgery on the patient so that the outcome of the procedure is precisely predicted and the procedure can be optimally tailored for the patient's specific anatomy. 3D print models are invaluable resource for hands-on surgical training of congenital heart surgeons.
-
Frontiers in pediatrics · Jan 2017
ReviewOptimal Chest Compression Rate and Compression to Ventilation Ratio in Delivery Room Resuscitation: Evidence from Newborn Piglets and Neonatal Manikins.
Cardiopulmonary resuscitation (CPR) duration until return of spontaneous circulation (ROSC) influences survival and neurologic outcomes after delivery room (DR) CPR. High quality chest compressions (CC) improve cerebral and myocardial perfusion. Improved myocardial perfusion increases the likelihood of a faster ROSC. ⋯ Evidence indicates that providers perform CC at rates both higher and lower than recommended. Video recording of DR CRP has been increasingly applied and observational studies of what is actually done in relation to outcomes could be useful. Different CC rates and ratios should also be investigated under controlled experimental conditions in animals during perinatal transition.
-
Frontiers in pediatrics · Jan 2017
Monitoring Cerebral and Renal Oxygenation Status during Neonatal Digestive Surgeries Using Near Infrared Spectroscopy.
Depending on the initial pathology, hypovolemia, intra-abdominal hypertension, and sepsis are often encountered in neonatal digestive surgery. Accurate newborn monitoring during and after surgery is essential to adapt resuscitation protocols. Near infrared spectroscopy (NIRS) is non-invasive and can detect hypoperfusion which indicates a low circulatory blood flow, regardless of the cause. ⋯ NIRS is a promising non-invasive bedside tool to monitor cerebral and tissue perfusion, analyzing tissue microcirculation. NIRS has its interest to guide neonatal digestive surgeries (bowel manipulation, viscera reduction) and may represent an early warning for identifying patients requiring resuscitation during or after these surgeries.
-
Frontiers in pediatrics · Jan 2017
ReviewEchocardiographic Evaluation of Hemodynamics in Neonates and Children.
Hemodynamic instability and inadequate cardiac performance are common in critically ill children. The clinical assessment of hemodynamic status is reliant upon physical examination supported by the clinical signs such as heart rate, blood pressure, capillary refill time, and measurement of the urine output and serum lactate. Unfortunately, all of these parameters are surrogate markers of cardiovascular well-being and they provide limited direct information regarding the adequacy of blood flow and tissue perfusion. ⋯ Like any other investigation, it has certain limitations and the most important limitation is its intermittent nature. Sometimes acquiring high quality images for precise functional assessment in a ventilated child can be challenging. Therefore, it should be used in conjunction with the existing tools (physical examination and clinical parameters) for hemodynamic assessment while making clinical decisions.
-
Epinephrine use in the delivery room for resuscitation of the newborn is associated with significant morbidity and mortality. Evidence for optimal dose, timing, and route of administration of epinephrine during neonatal resuscitation comes largely from extrapolated adult or animal literature. In this review, we provide the current recommendations for use of epinephrine during neonatal resuscitation and also the evidence behind these recommendations. In addition, we review the current proposed mechanism of action of epinephrine during neonatal resuscitation, review its adverse effects, and identify gaps in knowledge requiring urgent research.